Citation: Long TIAN, Wei-Xin DOU, Wei-Ting YANG, Cheng WANG. Size Effect of ZIF-8 on the Adsorption of Uranium[J]. Chinese Journal of Applied Chemistry, ;2021, 38(1): 84-91. doi: 10.19894/j.issn.1000-0518.200294 shu

Size Effect of ZIF-8 on the Adsorption of Uranium

  • Corresponding author: Wei-Xin DOU, 1648214326@qq.com Wei-Ting YANG, wyang@icems.kyoto-u.ac.jp Cheng WANG, cwang@tjut.edu.cn
  • Received Date: 24 September 2020
    Accepted Date: 7 October 2020

    Fund Project: the National Key Research and Development Project 2017YFA0700104the National Natural Science Foundation of China 21571170the Natural Science Foundation of Tianjin 17JCZDJC000

Figures(6)

  • ZIF-8, a classical metal-organic frameworks (MOFs) material, was used as an adsorbent to study the effect of particle size on its uranium adsorption performance. ZIF-8 particles with different sizes were synthesized by three methods, and characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), surface area and porosity analyzer. The adsorption of ZIF-8 particles with different sizes for U(Ⅵ) from uranyl nitrate solution was tested under the same conditions. The parameters of adsorption isotherm and kinetics were calculated. The results show that ZIF-8 with high crystallinity and high purity is successfully prepared. The morphology of the product is rhombic dodecahedron, and the sizes of the particles are about 50 nm, 150 nm and 2 μm with narrow distributions. The three samples have single uniform micropore structures and their BET surface areas are highly related to the particle size. All the ZIF-8 particles with different sizes can quickly adsorb 90% of U(Ⅵ) from the initial concentration of 200 mg/L of U(Ⅵ) solution in 70 min (at room temperature, pH=3).The particles with smaller size (about 50 nm) show better adsorption performance, and the saturated adsorption capacity reaches 520.26 mg/g. The adsorption kinetics conforms to the second order kinetic equation, and the adsorption isotherm conforms to the Langmuir model, which indicate that the adsorption for U(Ⅵ) of ZIF-8 belongs to chemical monolayer adsorption. After 4 cycles of adsorption and desorption, their removal rates for U(Ⅵ) are still above 70%.
  • 加载中
    1. [1]

      LOVLEY D R, PHILLIPS E J P, GORBY Y A. Microbial reduction of uranium[J]. Nature, 1991,350(6317):413-416. doi: 10.1038/350413a0

    2. [2]

      LIU Y, YUAN L, YUAN Y. A high efficient sorption of U(Ⅵ) from aqueous solution using amino-functionalized SBA-15[J]. J Radioanal Nucl Chem, 2012,292(2):803-810. doi: 10.1007/s10967-011-1515-y

    3. [3]

      YANG W, BAI Z Q, SHI W Q. MOF-76:from a luminescent probe to highly efficient UⅥ sorption material[J]. Chem Commun, 2013,49(88):10415-10417. doi: 10.1039/c3cc44983a

    4. [4]

      SAGHATCHI H, ANSARI R, MOUSAⅥ H Z. Highly efficient adsorptive removal of uranyl ions from aqueous solutions using dicalcium phosphate nanoparticles as a superabsorbent[J]. Nucl Eng Technol, 2018,50(7):1112-1119. doi: 10.1016/j.net.2018.06.004

    5. [5]

      WANG D, SONG J, WEN J. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Adv Energy Mater, 2018,8(33)1802607. doi: 10.1002/aenm.201802607

    6. [6]

      PREETHA C R, GLADIS J M, RAO T P. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles[J]. Environ Sci Technol, 2006,40(9):3070-3074. doi: 10.1021/es052195m

    7. [7]

      SUN Y, SHAO D, CHEN C. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environ Sci Technol, 2013,47(17):9904-9910. doi: 10.1021/es401174n

    8. [8]

      IVANOV A S, PARKER B F, ZHANG Z. Siderophore-inspired chelator hijacks uranium from aqueous medium[J]. Nat Commun, 2019,10(1)819. doi: 10.1038/s41467-019-08758-1

    9. [9]

      SHAMSIPUR M, FASIHI J, ASHTARI K. Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion[J]. Anal Chem, 2007,79(18):7116-7123. doi: 10.1021/ac070968e

    10. [10]

      CARBONI M, ABNEY C W, LIU S. Highly porous and stable metal-organic frameworks for uranium extraction[J]. Chem Sci, 2013,4(6):2396-2402. doi: 10.1039/c3sc50230a

    11. [11]

      JAMES S L. Metal-organic frameworks[J]. Chem Soc Rev, 2003,32(5):276-288. doi: 10.1039/b200393g

    12. [12]

      FURUKAWA H, KO N, GO Y B. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010,329(5990)424. doi: 10.1126/science.1192160

    13. [13]

      MURRAY L J, DINCǍ M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chem Soc Rev, 2009,38(5):1294-1314. doi: 10.1039/b802256a

    14. [14]

      MA L, ABNEY C, LIN W. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chem Soc Rev, 2009,38(5):1248-1256. doi: 10.1039/b807083k

    15. [15]

      LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chem Rev, 2012,112(2):869-932. doi: 10.1021/cr200190s

    16. [16]

      DENG H, GRUNDER S, CORDOVA K E. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012,336(6084)1018. doi: 10.1126/science.1220131

    17. [17]

      ALLENDORF M D, BAUER C A, BHAKTA R K. Luminescent metal organic frameworks[J]. Chem Soc Rev, 2009,38(5):1330-1352. doi: 10.1039/b802352m

    18. [18]

      JIANG H L, LIU B, AKITA T. Au@ZIF-8:CO Oxidation over gold nanoparticles deposited to metal-organic framework[J]. J Am Chem Soc, 2009,131(32):11302-11303. doi: 10.1021/ja9047653

    19. [19]

      LU G, HUPP J T. Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases[J]. J Am Chem Soc, 2010,132(23):7832-7833. doi: 10.1021/ja101415b

    20. [20]

      WANG C, ZHENG T, LUO R. In situ growth of ZIF-8 on pan fibrous filters for highly efficient U(Ⅵ) removal[J]. ACS Appl Mater Interfaces, 2018,10(28):24164-24171. doi: 10.1021/acsami.8b07826

    21. [21]

      ZHENG J, LIN Z, LIN G. Preparation of magnetic metal-organic framework nanocomposites for highly specific separation of histidine-rich proteins[J]. J Mater Chem B, 2015,3(10):2185-2191. doi: 10.1039/C4TB02007C

    22. [22]

      YEAN S, CONG L, YAVUZ C T. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate[J]. J Mater Res, 2005,20(12):3255-3264. doi: 10.1557/jmr.2005.0403

    23. [23]

      LIU X, SUN J, XU X. Adsorption and desorption of U(Ⅵ) on different-size graphene oxide[J]. Chem Eng J, 2019,360:941-950. doi: 10.1016/j.cej.2018.04.050

    24. [24]

      TSAI W T, LAI C W, HSIEN K J. Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution[J]. J Colloid Interface Sci, 2003,263(1):29-34. doi: 10.1016/S0021-9797(03)00213-3

    25. [25]

      ZHAO T, LI S H, SHEN L. The sized controlled synthesis of MIL-101(Cr) with enhanced CO2 adsorption property[J]. Inorg Chem Commun, 2018,96:47-51. doi: 10.1016/j.inoche.2018.07.036

    26. [26]

      XIN C, ZHAN H, HUANG X. Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO2 adsorption[J]. RSC Adv, 2015,5(35):27901-27911. doi: 10.1039/C5RA03986J

    27. [27]

      LEE Y R, JANG M S, CHO H Y. ZIF-8:a comparison of synthesis methods[J]. Chem Eng J, 2015,271:276-280. doi: 10.1016/j.cej.2015.02.094

    28. [28]

      SÁNCHEZ-LAÍNEZ J, ZORNOZA B, FRIEBE S. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test[J]. J Membr Sci, 2016,515:45-53. doi: 10.1016/j.memsci.2016.05.039

    29. [29]

      TRAN B L, CHIN H Y, CHANG B K. Dye adsorption in ZIF-8:the importance of external surface area[J]. Micropor Mesopor Mater, 2019,277:149-153. doi: 10.1016/j.micromeso.2018.10.027

    30. [30]

      LI J, WANG X, ZHAO G. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chem Soc Rev, 2018,47(7):2322-2356. doi: 10.1039/C7CS00543A

    31. [31]

      LUO B C, YUAN L Y, CHAI Z F. U(Ⅵ) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative[J]. J Radioanal Nucl Chem, 2016,307(1):269-276. doi: 10.1007/s10967-015-4108-3

    32. [32]

      LIU S, LUO M, LI J. Adsorption equilibrium and kinetics of uranium onto porous azo-metal-organic frameworks[J]. J Radioanal Nucl Chem, 2016,310(1):353-362. doi: 10.1007/s10967-016-4852-z

    33. [33]

      LIU L, YANG W, GU D. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U(Ⅵ)[J]. Front Chem, 2019,7(607).

    34. [34]

      DUTTA R K, SHAIDA M A, SINGLA K. Highly efficient adsorptive removal of uranyl ions by a novel graphene oxide reduced by adenosine 5'-monophosphate (RGO-AMP)[J]. J Mater Chem A, 2019,7(2):664-678. doi: 10.1039/C8TA09746A

  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    6. [6]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    9. [9]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    13. [13]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    14. [14]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    15. [15]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    16. [16]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    17. [17]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

Metrics
  • PDF Downloads(30)
  • Abstract views(3717)
  • HTML views(1078)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return