Citation: Jie ZHENG, Hong WANG, Yan-Peng YAN, Jian-Guo CUI. Research Progress of Droplet Generation and Detection Technology of Microfluidic Chip[J]. Chinese Journal of Applied Chemistry, ;2021, 38(1): 1-10. doi: 10.19894/j.issn.1000-0518.200253 shu

Research Progress of Droplet Generation and Detection Technology of Microfluidic Chip

  • Corresponding author: Jian-Guo CUI, cjg998@hotmail.com
  • Received Date: 25 August 2020
    Accepted Date: 3 November 2020

    Fund Project: National Science and Technology Support Program Project 2015BAI01B14Chongqing Higher Education Teaching Reform Research General Project 173114Chongqing University of Technology Graduate Education Quality Course Project Funding yyk2017106Chongqing Technology Innovation and Application Demonstration (Social People′s Livelihood) General Project cstc2018jscx-msyb0290

Figures(15)

  • The microfluidic chip droplet technology is a new technology for manipulating tiny volumes of liquids, which can realize the generation and control of high-throughput microscopic samples, as well as the operation of independent droplets. The dispersed micro-droplet unit can be used as an ideal micro-reactor, showing great application potential in the fields of drug screening, material screening and high value-added micro-particle material synthesis in biomedicine. The droplet microfluidic chip uses the change of the fluid shear force to make the immiscible two-phase fluid generate stable and ordered droplets at its interface. The current generation methods of microdroplets mainly include hydrodynamic methods, pneumatic method, light control method and electric method, etc. Droplet-based microfluidic systems are increasingly used to perform complex multiple reactions, measurements and analyses, and can perform ultra-small volume and ultra-high throughput chemical and biological experiments. For the droplet microfluidic system, the speed, size and content of the droplet will affect the final inspection result. Therefore, the real-time detection of the droplet formation rate and the content of the droplet is very important, and it is most commonly used at present. The droplet detection methods include optical detection technology and electrical sensing detection technology. The two-phase flow droplet generation mechanism and the existing droplet generation technology are discussed and analyzed, and the droplet detection technology is also reviewed.
  • 加载中
    1. [1]

      WEI Y Y, SUN Z Q, REN H H. Advances in microdroplet generation methods[J]. Chinese J Anal Chem, 2019,47(6):10-19.  

    2. [2]

      CHEN J S, JIANG J H. Microfluidic droplet technology[J]. Chinese J Anal Chem, 2012,40(8):1293-1300.  

    3. [3]

      THORSEN T, ROBERTS R W, Arnold F H. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Phys Rev Lett, 2001,86(18):4163-4166. doi: 10.1103/PhysRevLett.86.4163

    4. [4]

      TAN S H, SEMIN B T, BARET J C. Microfluidic flow-focusing in AC electric fields[J]. Lab Chip, 2014,14(6):1099-1106. doi: 10.1039/c3lc51143j

    5. [5]

      YANG D P, HUANG J R, ZHANG L J. An unusual zinc substrate-induced self-construction route to various hierarchical architectures of hydrated tungsten oxide[J]. Chem Commun, 2010,46(25):4556-4558. doi: 10.1039/c000055h

    6. [6]

      PARK S Y, WU T H, CHEN Y. High-speed droplet generation on demand driven by pulse laser-induced cavitation[J]. Lab Chip, 2011,11(6)1010. doi: 10.1039/c0lc00555j

    7. [7]

      GU H, MURADE C U, Duits M H G. A microfluidic platform for on-demand formation and merging of microdroplets using electric control[J]. Biomicrofluidics, 2011,5(1)11101. doi: 10.1063/1.3570666

    8. [8]

      RODRIGUEZ-RODRIGUEZ J, SEVILLA A, MANUEL G J. Generation of microbubbles with applications to industry and medicine[J]. Annu Rev Fluid Mech, 2015,47(1):405-429. doi: 10.1146/annurev-fluid-010814-014658

    9. [9]

      CHOU W L, LEE P Y, YANG C L. Recent advances in applications of droplet microfluidics[J]. Micromachines, 2015,6(9):1249-1271. doi: 10.3390/mi6091249

    10. [10]

      CHENG Y N, CHEN Z H, LI J F. Overview of modern biomedical detection technology based on microfluidic[J]. Appl Chem Ind, 2018,47(6):1227-1231. doi: 10.3969/j.issn.1671-3206.2018.06.037

    11. [11]

      MOISEEVA E V, FLETCHER A A, HARNETT C K. Thin-film electrode based droplet detection for microfluidic systems[J]. Sens Actuators B Chem, 2011,155(1):408-414. doi: 10.1016/j.snb.2010.11.028

    12. [12]

      ZHU Y, FANG Q. Analytical detection techniques for droplet microfluidics-a review[J]. Anal Chim Acta, 2013,787:24-35. doi: 10.1016/j.aca.2013.04.064

    13. [13]

      NIU X, ZHANG M, PENG S. Real-time detection, control, and sorting of microfluidic droplets[J]. Biomicrofluidics, 2007,1(4)44101. doi: 10.1063/1.2795392

    14. [14]

      NISISAKO T, TORII T, HIGUCHI T. Droplet formation in a microchannel network[J]. Lab Chip, 2002,2(1)24. doi: 10.1039/B108740C

    15. [15]

      ZHANG J Z, CHEN W K, ZHOU N X. Experiment study on formation and length of droplets in T-junction microchannels[J]. J Zhejiang Univ(Eng Sci), 2020,54(5):1007-1013.  

    16. [16]

      ANNA S L, BONTOUX N, STONE H A. Formation of dispersions using "flow focusing" in microchannels[J]. Appl Phys Lett, 2003,82(3):364-366. doi: 10.1063/1.1537519

    17. [17]

      JOANICOT M, AJDARI A. Droplet control for microfluidics[J]. Appl Phys Sci, 2005,309(5736):887-888.  

    18. [18]

      LIU Z M, YANG Y. Influence of geometry configurations on the microdroplets in flow focusing microfluidics[J]. Chinese J Theor Appl Mech, 2016,48(4):867-876.  

    19. [19]

      CRAMER C, FISCHER P, WINDHAB E J. Drop formation in a co-flowing ambient fluid[J]. Chem Eng Sci, 2004,59(15):3045-3058. doi: 10.1016/j.ces.2004.04.006

    20. [20]

      UTADA A S, FERNANDEZ-NIEVES A, STONE H A. Dripping to jetting transitions in coflowing liquid streams[J]. Phys Rev Lett, 2007,99(9)094502. doi: 10.1103/PhysRevLett.99.094502

    21. [21]

      CHEN H, ZHAO Y, LI J. Reactions in double emulsions by flow-controlled coalescence of encapsulated drops[J]. Lab Chip, 2011,11(14):2312-2315. doi: 10.1039/c1lc20265k

    22. [22]

      WANG H, ZHENG J, YAN Y P. Droplet generation technology based on T-type cocurrent focusing method[J]. Chem Ind Eng Prog, 2020(5):291-298.  

    23. [23]

      LEE C P, LAN T S, LAI M F. Fabrication of two-dimensional ferrofluid microdroplet lattices in a microfluidic channel[J]. J Appl Phys, 2014,115(17)17BB527.  

    24. [24]

      CHURSKI K, MICHALSKI J, GARSTECKI P. Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device[J]. Lab Chip, 2010,10(4):512-518. doi: 10.1039/B915155A

    25. [25]

      NGUYEN N T, TING T H, YAP Y F. Thermally mediated droplet formation in microchannels[J]. Appl Phys Lett, 2007,91(8)s10404.  

    26. [26]

      BAROUD C N, DELVILLE J P, GALLAIRE F. Thermocapillary valve for droplet production and sorting[J]. Phys Rev E: Stat, Nonlinear, Soft Matter Phys, 2007,75(4)046302. doi: 10.1103/PhysRevE.75.046302

    27. [27]

      HAO G, MICHAEL H G D, FRIEDER M. A hybrid microfluidic chip with electrowetting functionality using ultraviolet(UV)-curable polymer[J]. Lab Chip, 2010,10(12):1550-1556. doi: 10.1039/c001524e

    28. [28]

      LINK D R, ERWAN GRASLAND-MONGRAIN, DURI A. Electric control of droplets in microfluidic devices[J]. Angew Chem, 2010,45(16):2556-2560.

    29. [29]

      LIU J, TAN S H, YAP Y F. Numerical and experimental investigations of the formation process of ferrofluid droplets[J]. Microfluid Nanofluid, 2011,11(2):177-187. doi: 10.1007/s10404-011-0784-7

    30. [30]

      TAN S H, NGUYEN N T, YOBAS L. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction[J]. J Micromech Microeng, 2010,20(4)045004. doi: 10.1088/0960-1317/20/4/045004

    31. [31]

      ZENG S, LI B, SU X. Microvalve-actuated precise control of individual droplets in microfluidic devices[J]. Lab Chip, 2009,9(10):1340-1343. doi: 10.1039/b821803j

    32. [32]

      CASTRO-HERNANDEZ E, GARCIA-SANCHEZ P, TAN S H. Breakup length of AC electrified jets in a microfluidic flowfocusing junction[J]. Microfluid Nanofluid, 2015,19(4):787-794. doi: 10.1007/s10404-015-1603-3

    33. [33]

      SRIVASTAVA N, BURNS M A. Electronic drop sensing in microfluidic devices: automated operation of a nanoliter viscometer[J]. Lab Chip, 2006,6(6):744-751. doi: 10.1039/b516317j

    34. [34]

      HUEBNER A, SRISA-ART M, HOLT D. Quantitative detection of protein expression in single cells using droplet microfluidics[J]. Chem Comm, 2007(12):1218-1220. doi: 10.1039/b618570c

    35. [35]

      CAHILL B P, LAND R, NACKE T. Contactless sensing of the conductivity of aqueous droplets in segmented flow[J]. Sens Actuators B, 2011,159(1):286-293. doi: 10.1016/j.snb.2011.07.006

    36. [36]

      TAO D, CÁTIA B. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices[J]. Sensor, 2015,15:2694-2708. doi: 10.3390/s150202694

    37. [37]

      ZHAO Y, XU Z, PARHIZKAR M. Magnetic liquid marbles, their manipulation and application in optical probing[J]. Microfluid Nanofluid, 2012,13(4):555-564. doi: 10.1007/s10404-012-0976-9

    38. [38]

      NGUYEN N T, LASSEMONO S, CHOLLET F A. Optical detection for droplet size control in microfluidic droplet-based analysis systems[J]. Sens Actuators B Chem, 2006,117(2):431-436. doi: 10.1016/j.snb.2005.12.010

    39. [39]

      JIANG G F, ATTIYA S, OCVIRK G. Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis[J]. Biosens Bioelectron, 2000,14(10/11):861-869.  

    40. [40]

      BASU A S. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters[J]. Lab Chip, 2013,13(10):1892-1901. doi: 10.1039/c3lc50074h

    41. [41]

      CHEN H X, CHENG D, HU Z L. Application of image analysis in liquid droplet detection technology[J]. Transd Microsys Technol, 2016,35(4):157-160.  

    42. [42]

      LI Z L, LI J L, CHEN Z G. Research progress of microfluidic chip technology in drug analysis[J]. J China Pharm, 2019,30(16):2279-2284.  

    43. [43]

      WANG F, BURNS M A. Multiphase bioreaction microsystem with automated on chip droplet operation[J]. Lab Chip, 2010,10:1308-1315. doi: 10.1039/b925705e

    44. [44]

      JORG S, GRODRIAN A, ROBERT R. Online optical detection of food contaminants in microdroplets[J]. Eng Life Sci, 2009,9(5):391-397. doi: 10.1002/elsc.200800127

    45. [45]

      UWE P, DIETER F, MARKUS S. Testing miniaturized electrodes for impedance measurements within the β-dispersion-a practical approach[J]. J Electr Bioimp, 2010,1:41-55.

    46. [46]

      JIN Y, LUO G A. Fabrication of the microfluidic chips with integrated ultra-micro electrodes and its application in on-chip electrochemical detection[J]. J Chem Chinese Univ, 2003,24(7):1180-1184. doi: 10.3321/j.issn:0251-0790.2003.07.006

    47. [47]

      YANG W D. Impedance detection of droplets in microfluidic chip[D]. Dalian: Dalian University of Technology, 2013.

    48. [48]

      LUO C, YANG X, FU Q. Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation[J]. Electrophoresis, 2006,27(10):1977-1983. doi: 10.1002/elps.200500665

    49. [49]

      ELBUKEN C, GLAWDEL T, CHAN D. Detection of microdroplet size and speed using capacitive sensors[J]. Sens Actuator A, 2011,171(2):55-62. doi: 10.1016/j.sna.2011.07.007

    50. [50]

      DEMORI M, FERRARI V, POESIO P. A microfluidic capacitance sensor for fluid discrimination and characterization[J]. Sens Actuator A, 2011,172(1):212-219. doi: 10.1016/j.sna.2011.07.013

    51. [51]

      HU X, LIN X, HE Q. Electrochemical detection of droplet contents in polystyrene microfluidic chip with integrated micro film electrodes[J]. J Electroanal Chem, 2014,726(24):7-14.  

    52. [52]

      ISGOR P K, MARCALI M, KESER M. Microfluidic droplet content detection using integrated capacitive sensors[J]. Sens Actuators B, 2015,210:669-675. doi: 10.1016/j.snb.2015.01.018

  • 加载中
    1. [1]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(199)
  • Abstract views(5339)
  • HTML views(2331)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return