Citation: Xue-Ying WEI, Wei WU, Yong-Ning NAI, Meng-Yuan JIANG, Shi-Wei TIAN, Guo-Liang MAO. Research Progress on the Selective Oligomerization of Ethylene Catalyzed by Phosphoramine Chromium and Diphosphinoamine Chromium[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 136-156. doi: 10.19894/j.issn.1000-0518.200250 shu

Research Progress on the Selective Oligomerization of Ethylene Catalyzed by Phosphoramine Chromium and Diphosphinoamine Chromium

  • Corresponding author: Wei WU, 13836965068@163.com
  • Received Date: 22 August 2020
    Accepted Date: 20 October 2020

    Fund Project: the National Natural Science Foundation of China 51534004the National Natural Science Foundation of China U1362110

Figures(31)

  • The selective oligomerization of ethylene to prepare linear α-olefins has been highly valued in both academia and industry because of its high target product selectivity, easy product separation, and significant economic benefits. Chromium-based catalysts have good overall performance in catalyzing selective oligomerization of ethylene, and are a class of catalysts with broad application prospects. Recent studies have shown that the ligand structure has an important effect on the catalyst performance; the introduction of hydrogen in the reaction system can improve the distribution of oligomerization products and inhibit the formation of polymers; development of the catalyst without methylaluminoxane as a cocatalyst can reduce the costs of the catalyst; the ethylene selective oligomerization mechanism and the oxidation state of the central metal have important guiding significance to the design of the catalyst. Recent progress in the research of phosphoamine chromium and diphosphinoamine chromium complexes in the selective oligomerization of ethylene is reviewed from the above aspects, with the problems to be solved in the industrializaion of ethylene selective tetramerization and the further development in ethylene selective oligomerization.
  • 加载中
    1. [1]

      WANG Z, LIU Q B, SUN W H. Recent advances in Ni-mediated ethylene chain growth: N imine-donor ligand effects on catalytic activity thermal stability and oligo-/polymer structure[J]. Coord Chem Rev, 2017,350:68-83. doi: 10.1016/j.ccr.2017.06.003

    2. [2]

      CHEN L, LI G, WANG Z. Ethylene oligomerization over nickel supported silica-alumina catalysts with high selectivity for C10+ products[J]. Catal, 2020,10(2)180. doi: 10.3390/catal10020180

    3. [3]

      WANG J, LIU J Y, CHEN L D. Synthesis and ethylene oligomerization behavior of hyperbranched bispyridineimine chromium catalyst[J]. Chinese J Appl Chem, 2019,36(7):773-781.  

    4. [4]

      LI J, ZHANG Q, HU X. 2-Acetyloxymethyl-substituted 5, 6, 7-trihydroquinolinyl-8-ylideneamine-Ni(Ⅱ) chlorides and their application in ethylene dimerization/trimerization[J]. Appl Organomet Chem, 2020,34(1)e5254.

    5. [5]

      WU H, MAO G L, WANG Y H. Ethylene oligomerization technology from non-selective oligomerization to selective oligomerization[J]. Sci Technol Chem Ind, 2019,27(1):83-90.  

    6. [6]

      GRAUKE R, SCHEPPER R, RABEAH J. Impact of Al activators on structure and catalytic performance of Cr catalysts in homogeneous ethylene oligomerization-a multitechnique in situ/operando study[J]. Chem Cat Chem, 2020,12:1-2.  

    7. [7]

      NEWLAND R J, SMITH A, SMITH D M. Accessing alkyl- and alkenyl-cyclopentanes from Cr-catalysed ethylene oligomerization using 2-phosphinophosphinine ligands[J]. Organometallics, 2018,37(6):1062-1073. doi: 10.1021/acs.organomet.8b00063

    8. [8]

      AZIMNAVAHSI L, MOHAMADNIA Z. Optimization of ethylenetrimerization using catalysts based on TiCl3/half-sandwich ligands[J]. Appl Organomet Chem, 2019,33(2)e4666. doi: 10.1002/aoc.4666

    9. [9]

      FALLAHI M, AHMADI E, MOHAMADNIA Z. Effect of inorganic oxide supports on the activity of chromium-based catalysts in ethylene trimerization[J]. Appl Organomet Chem, 2019,33(8)e4975.  

    10. [10]

      ALSA'DOUN A W. Dimerization of ethylene to butene-1 catalyzed by Ti(OR')4-AlR3[J]. Cheminform, 1993,25(7):1-40.  

    11. [11]

      LICCIULLI S, ALBAHILY K, FOMITCHEVA V. A chromium ethylidene complex as a potent catalyst for selective ethylene trimerization[J]. Angew Chem, 2011,50(10):2346-2355. doi: 10.1002/anie.201006953

    12. [12]

      FREEMAN J W, BUSTER J L, KNUDSEN R D. Olefin production: US 5856257[P]. 1999.

    13. [13]

      YOSHIDA T, YAMAMOTO T, OKADA H, et al. Catalyst for trimerization of ethylene and process for trimerizing ethylene using the catalyst: US 0035029[P]. 2002.

    14. [14]

      ZHANG J, LI A, HOR T S A. Crystallographic revelation of the role of AlMe3(in MAO) in Cr[NNN] pyrazolyl catalyzed ethylene trimerization[J]. Organometallics, 2009,28(10):2935-2937. doi: 10.1021/om9002347

    15. [15]

      LI Y L. South Africa Sasol company successfully put into operation the world's first ethylene tetramerization industrial production equipment[J]. Technol Econom Petrochem, 2014,30(2):61-61.  

    16. [16]

      WANG Z, SOLAN G A, SUN W H. Carbocyclic-fused N, N, N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization[J]. Coord Chem Rev, 2018,363(6):92-108.  

    17. [17]

      GONG M, LIU Z, LI Y. Selective co-oligomerization of ethylene and 1-hexene by chromium-PNP catalysts: a DFT study[J]. Organometallics, 2016,35(7):972-981. doi: 10.1021/acs.organomet.5b01029

    18. [18]

      YUAN S F, YAN Y, SUN W H. Recent advancements in N-ligated group 4 molecular catalysts for the (co)polymerization of ethylene[J]. Coord Chem Rev, 2020,411:213254-213269. doi: 10.1016/j.ccr.2020.213254

    19. [19]

      SVEJDA S A, BROOKHART M. Ethylene oligomerization and propylene dimerization using cationic (α-diimine)nickel(Ⅱ) catalysts[J]. Organometallics, 2017,18(1):65-74.  

    20. [20]

      BARIASHIR C, HUANG C, SUN W H. Recent advances in homogeneous chromium catalyst design for ethylene tri-, tetra-, oligo- and polymerization[J]. Coord Chem Rev, 2019,385:208-229. doi: 10.1016/j.ccr.2019.01.019

    21. [21]

      WU Q, WANG W, XU G. Bulky iminophosphine-based nickel and palladium catalysts bearing 2, 6-dibenzhydryl groups for ethylene oligo-/polymerization[J]. Appl Organomet Chem, 2020,34e5428.  

    22. [22]

      WANG J, LIU J, CHEN L. Preparation of chromium catalysts bearing bispyridylamine and its performance in ethylene oligomerization[J]. Trans Met Chem, 2019,44(7):681-688. doi: 10.1007/s11243-019-00333-3

    23. [23]

      CHEN L, HUO H, WANG J. Ethylene oligomerization studies utilizing nickel complexes bearing pyridine-imine ligands[J]. Inorg Chim Acta, 2019,491:67-75. doi: 10.1016/j.ica.2019.04.001

    24. [24]

      ZHANG L, WEI W, JIANG T. Efficient chromium-based catalysts for ethylene tri-/tetramerization switched by silicon-bridged/N, P-based ancillary ligands: a structural, catalytic and DFT study[J]. Appl Petrochem Res, 2017,7:5011-5088.  

    25. [25]

      BOLLMANN A, BLANN K, DIXON J T. Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities[J]. J Am Chem Soc, 2004,126(45):14712-14713. doi: 10.1021/ja045602n

    26. [26]

      ZHOU Y, WU H, XU S. Highly active chromium-based selective ethylene tri-/tetramerization catalysts supported by PNPO. phosphazane ligands[J]. Dalton Trans, 2015,44(20):9545-9550. doi: 10.1039/C5DT00801H

    27. [27]

      TOBIAS , DIXON J T, HAUMANN M. Trimerization and tetramerization of ethylene in continuous gas-phase reaction using a Cr-based supported liquid phase catalyst[J]. React Chem Eng, 2019,4(1):131-140. doi: 10.1039/C8RE00179K

    28. [28]

      ZHANG L, MENG X, CHEN Y. Chromium-based ethylene tetramerization catalysts supported by silicon-bridged diphosphine ligands: further combination of high activity and selectivity[J]. ChemCatChem, 2017,9(1):76-79. doi: 10.1002/cctc.201600941

    29. [29]

      FERREIRA J, ZILZ R, BOEIRA I S. Chromium complexes based on thiophene-imine ligands for ethylene oligomerization[J]. Appl Organomet Chem, 2019,33(3)e4697. doi: 10.1002/aoc.4697

    30. [30]

      ALFEROV K, BELOV G P, MENG Y. Chromium catalysts for selective ethylene oligomerization to 1-hexene and 1-octene: recent results[J]. Appl Catal A-Gen, 2017,542:71-124. doi: 10.1016/j.apcata.2017.05.014

    31. [31]

      LIU Q Y, GAO R, HOU J X. Tridentate P.N.P chromium complexes: synthesis, characterization and their ethylene oligomerization and polymerization[J]. Chinese J Org Chem, 2013,33(4):808-814.  

    32. [32]

      JIANG T, ZHANG S, JIANG X. The effect of N-aryl bisphosphineamine ligands on the selective ethylene tetramerization[J]. J Mol Catal A Chem, 2008,279(1):90-93. doi: 10.1016/j.molcata.2007.10.009

    33. [33]

      CLOETE N, VISSER H G, ENGELBRECHT I. Ethylene tri- and tetramerization: a steric parameter selectivity switch from X-ray crystallography and computational analysis[J]. Inorg Chem, 2013,52(5):2268-2270. doi: 10.1021/ic302578a

    34. [34]

      NIFANTEV I E, VINOGRADOV A A, VINOGRADOV A A. 5, 6-Dihydrodibenzo[c, e] [1, 2] azaphosphinine-based PNP ligands, Cr(0) coordination, and Cr(Ⅲ) precatalysts for ethylene oligomerization[J]. Organometallics, 2018,37(16):2660-2664. doi: 10.1021/acs.organomet.8b00427

    35. [35]

      WANG J, GAO R, ZHANG N. Novel dendritic PNP chromium complexes: synthesis, characterization, and performance on ethylene oligomerization[J]. Helv Chim Acta, 2017,100(12)e1700162. doi: 10.1002/hlca.201700162

    36. [36]

      ALBAHILY K, GAMBAROTTA S, DUCHATEAU R. Ethylene oligomerization promoted by a silylated-SNS chromium system[J]. Organometallics, 2011,30(17):4655-4664. doi: 10.1021/om200505a

    37. [37]

      ALAM F, ZHANG L, JIANG T. Catalytic systems based on chromium(Ⅲ) silylated-diphosphinoamines for selective ethylene tri-/tetramerization[J]. ACS Catal, 2018,8(11):10836-10845. doi: 10.1021/acscatal.8b02698

    38. [38]

      LIU R, ZHOU X H, LIU Z Y. Selective ethylene oligomerization catalyzed by the chromium complex bearing N-tetrahydrofurfuryl PNP ligand[J]. Chinese J Org Chem, 2017,37(9):2315-2321.  

    39. [39]

      HÄRZSCHEL S, KVHN F E, ROSENTHAL U. Comparative study of new chromium-based catalysts for the selective tri- and tetramerization of ethylene[J]. Catal Sci Technol, 2015,5(3):1678-1682. doi: 10.1039/C4CY01441C

    40. [40]

      STENNETT T E, HEY T W, WASS D F. N, N-diphospholylamines-a new family of ligands for highly active chromium-based selective ethene oligomerisation catalysts[J]. ChemCatChem, 2013,5(10):2946-2954. doi: 10.1002/cctc.201300306

    41. [41]

      ZHOU Y, WU H, ZHANG J. Highly active chromium-based selective ethylene tri-/tetramerization catalysts supported by PNPO phosphazane ligands[J]. Dalton Trans, 2015,44(20):9545-9550. doi: 10.1039/C5DT00801H

    42. [42]

      JI X, SONG L, ZHANG C. Highly active chromium-based selective ethylene tri-/tetramerization catalysts supported by N, N-diphospholylamines[J]. Inorg Chim Acta, 2017,466:177-121.  

    43. [43]

      FENG Z C, MAO G L, WU W. Synthesis of phosphine ligands based on 5-amino-o-cresol and its application in ethylene oligomerization[J]. Chinese J Org Chem, 2018,38(3):698-704.  

    44. [44]

      KIM S, KIM T, CHUNG J. Bimetallic ethylene tetramerization catalysts derived from chiral DPPDME ligands: syntheses, structural characterizations, and catalytic performance of [(DPPDME)CrCl3]2 (DPPDME=S, S- and R, R-chiraphos and meso-achiraphos)[J]. Organometallics, 2010,29(22):5805-5811. doi: 10.1021/om100400b

    45. [45]

      CHEREDILIN D N, SHELOUMOV A M, SENIN A A. Catalytic properties of chromium complexes based on 1, 2-bis(diphenylphosphino)benzene in the ethylene oligomerization reaction[J]. Petrol Chem, 2019,59(1):72-78. doi: 10.1134/S0965544119130036

    46. [46]

      BOELTER S D, DAVIES D R, KLOSIN J. Phospholane-based ligands for chromium-catalyzed ethylene tri- and tetramerization[J]. Organometallics, 2020,39(7):967-987. doi: 10.1021/acs.organomet.9b00721

    47. [47]

      ZHANG C, SONG L, WU H. Ethylene tri-/tetramerization catalysts supported by diphosphinothiophene ligands[J]. Dalton Trans, 2017,46(26):8399-8404. doi: 10.1039/C7DT01060E

    48. [48]

      ZHANG J, WANG X, ZHANG X. Switchable ethylene tri-/tetramerization with high activity: subtle effect presented by backbone-substituent of carbon-bridged diphosphine ligands[J]. ACS Catal, 2016,3(10):2311-2317.  

    49. [49]

      LEE H S, JOE Y, PARK H. Chromium catalysts for ethylene trimerization/tetramerization functionalized with ortho-fluorinated arylphosphine ligand[J]. Catal Commun, 2019,121:15-18. doi: 10.1016/j.catcom.2018.12.010

    50. [50]

      ZHENG M F, WU H F, ZHANG J. Ethylene oligomerization catalyzed by binuclear Cr catalyst based on a bridged phosphine ligand[J]. Pet Technol, 2018,47(9):924-928.  

    51. [51]

      YU B W, JIANG Y, MOU Y Q. The role of hydrogen in Cr catalyst catalyzed oligomerization of ethylene[J]. Speciality Pet, 2019,36(6):11-13.  

    52. [52]

      SHI P F, CAO C G, JIANG T. Effect of hydrogen on ehylene tetramerization to 1-octene with Cr catalyst[J]. Petrochem Technol, 2015,44(8):948-952.  

    53. [53]

      HAGEN H, KRETSCHMER W P, BUREN F R V. Selective ethylene trimerization: a study into the mechanism and the reduction of PE formation[J]. J Mol Catal A-C, 2006,248(1):237-247.  

    54. [54]

      XU K, LI T L, ZHENG M F, et al. Method for removing catalyst and polyethylene in process for producing α-olefin by ethylene oligomerization: CN, 107151195 A[P]. 2016.

    55. [55]

      JIANG T, ZHANG L, GAO J. Hydrogen: efficient promoter for PNP/Cr(Ⅲ)/MAO catalyzed ethylene tetramerization toward 1-octene[J]. Appl Pet R, 2016,6(4):1-5. doi: 10.1007/s13203-016-0151-4?view=classic

    56. [56]

      BAHRI-LALEH N, KARIMI M, KALANTARI Z. H2 effect in Chevron-Phillips ethylene trimerization catalytic system: an experimental and theoretical investigation[J]. Polym Bull, 2017,75(8):3555-3565.  

    57. [57]

      LIU L, LIU Z, CHENG R. Unraveling the effects of H2, N substituents and secondary ligands on Cr/PNP-catalyzed ethylene selective oligomerization[J]. Organometallics, 2018,37(21):3893-3900. doi: 10.1021/acs.organomet.8b00578

    58. [58]

      STENNETT T E, HADDOW M F, WASS D F. Avoiding MAO: alternative activation methods in selective ethylene oligomerization[J]. Organometallics, 2012,31(19):6960-6965. doi: 10.1021/om300739m

    59. [59]

      MCGUINNESS D S, RUCKLIDGE A J, TOOZE R P. Cocatalyst influence in selective oligomerization: effect on activity, catalyst stability, and 1-hexene/1-octene selectivity in the ethylene trimerization and tetramerization reaction[J]. Organometallics, 2007,26(10):2561-2569. doi: 10.1021/om070029c

    60. [60]

      HIRSCHER N A, AGAPIE T. Stoichiometrically activated catalysts for ethylene tetramerization using diphosphinoamine-ligated Cr tris(hydrocarbyl) complexes[J]. Organometallics, 2017,36(21):4107-4110. doi: 10.1021/acs.organomet.7b00706

    61. [61]

      MCGUINNESS D S, BROWN D B, TOOZE R P. Ethylene trimerization with CrPNP and CrSNS complexes: effect of ligand structure, metal oxidation state, and role of activator on catalysis[J]. Organometallics, 2006,25(15):3605-3610. doi: 10.1021/om0601091

    62. [62]

      KIM T H, LEE H M, JEONG M S. Methylaluminoxane-free chromium catalytic system for ethylene tetramerization[J]. ACS Omega, 2017,2(3):765-773. doi: 10.1021/acsomega.6b00506

    63. [63]

      KIM T H, LEE H M, PARK H S. MAO-free and extremely active catalytic system for ethylene tetramerization[J]. Appl Organomet Chem, 2019,33(4)e4829. doi: 10.1002/aoc.4829

    64. [64]

      HIRSCHER N A, PEREZ S D, AGAPIE T. Robust chromium precursors for catalysis: isolation and structure of a single-component ethylene tetramerization precatalyst[J]. J Am Chem Soc, 2019,141(14):6022-6029. doi: 10.1021/jacs.9b01387

    65. [65]

      YANG Y, LIU Z, LIU B P. Selective ethylene tri-/tetramerization by in situ-formed chromium catalysts stabilized by N, P-based ancillary ligand systems[J]. ACS Catal, 2013,3(10):2353-2361. doi: 10.1021/cs4004968

    66. [66]

      AGAPIE T, SCHOFER S J, LABINGER J A. Mechanistic studies of the ethylene trimerization reaction with chromium diphosphine catalysts: experimental evidence for a mechanism involving metallacyclic intermediates[J]. J Am Chem Soc, 2004,126(5):1304-1305. doi: 10.1021/ja038968t

    67. [67]

      AGAPIE T, LABINGER J A, BERCAW J E. Mechanistic studies of olefin and alkyne trimerization with chromium catalysts: deuterium labeling and studies of regiochemistry using a model chromacyclopentane complex[J]. J Am Chem Soc, 2007,129(46):14281-14295. doi: 10.1021/ja073493h

    68. [68]

      ARLMAN E J, COSSEE P. Ziegler-Natta catalysis Ⅲ stereospecific polymerization of propene with the catalyst X system. TiCl3AlEt3[J]. J Catal, 1964,3(1):99-104. doi: 10.1016/0021-9517(64)90097-1

    69. [69]

      ALLEGRA G. Discussion on mechanism of polymerization of α-olefins with Ziegler-Natta catalysts[J]. Macromol Chem Phys, 1971,145(1):235-246. doi: 10.1002/macp.1971.021450119

    70. [70]

      SUTTIL J A, MCGUINNESS D S. Mechanism of ethylene dimerization catalyzed by Ti(OR') 4/AlR 3[J]. Organometallics, 2012,31(19):7004-7010. doi: 10.1021/om3008508

    71. [71]

      BELOV G P, DZHABIEV T S, KOLESNIKOV I M. Activation of C-H and C-C bonds in ethylene and piperylene catalytic reactions[J]. J Mol Catal, 1982,14(1):105-112. doi: 10.1016/0304-5102(82)80053-9

    72. [72]

      MANYIK R M, WALKER W E, WILSON T P. A soluble chromium-based catalyst for ethylene trimerization and polymerization[J]. J Catal, 1977,47(2):197-209. doi: 10.1016/0021-9517(77)90167-1

    73. [73]

      BRIGGS J R. The selective trimerization of ethylene to hex-1-ene[J]. J Chem Soc Chem Commun, 1989,11(11):674-675.  

    74. [74]

      OVERETT M, BLANN K, BOLLMANN A. Mechanistic investigations of the ethylene tetramerisation reaction[J]. J Am Chem Soc, 2005,127(30):10723-10730. doi: 10.1021/ja052327b

    75. [75]

      BRITOVSEK G J, MCGUINNESS D S, WIERENGA T S. Single- and double-coordination mechanism in ethylene tri- and tetramerization with Cr/PNP catalysts[J]. ACS Catal, 2015,5(7):4152-4166. doi: 10.1021/acscatal.5b00989

    76. [76]

      KWON D, FULLER J T, KILGORE U J. Computational transition-state design provides experimentally verified Cr(P, N) catalysts for control of ethylene trimerization and tetramerization[J]. ACS Catal, 2018,8(2):1138-1142. doi: 10.1021/acscatal.7b04026

    77. [77]

      BOELTER S D, DAVIES D R, MARGL P M. Phospholane-based ligands for chromium-catalyzed ethylene tri- and tetramerization[J]. Organometallics, 2020,39(7):976-987. doi: 10.1021/acs.organomet.9b00722

    78. [78]

      HIRSCHER N A, LABINGER J A, AGAPIE T. Isotopic labelling in ethylene oligomerization: addressing the issue of 1-octene vs. 1-hexene selectivity[J]. Dalton Trans, 2019,48(1):40-44. doi: 10.1039/C8DT04509G

    79. [79]

      PEITZ S, ALURI B, PEULECKE N. An alternative mechanistic concept for homogeneous selective ethylene oligomerization of chromium-based catalysts: binuclear metallacycles as a reason for 1-octene selectivity?[J]. Chem Eur J, 2010,16(26):7670-7676. doi: 10.1002/chem.201000750

    80. [80]

      JABRI A, MASON C, SIM Y. Isolation of single-component trimerization and polymerization chromium catalysts: the role of the metal oxidation state[J]. Angew Chem Int Ed, 2008,47(50):9717-9721. doi: 10.1002/anie.200803434

    81. [81]

      VIDYARATNE I, NIKIFOROV G B, GORELSKY S I. Isolation of a self-activating ethylene trimerization catalyst[J]. Angew Chem Int Ed, 2009,48(35):6552-6556. doi: 10.1002/anie.200900957

    82. [82]

      ALBAHILY K, SHAIKH Y, SEBASTIAO E. Vinyl oxidative coupling as a synthetic route to catalytically active monovalent chromium[J]. J Am Chem Soc, 2011,133(16):6388-6395. doi: 10.1021/ja201003j

    83. [83]

      CARTER E, CAVELL K J, GABRIELLI W F. Formation of[Cr(CO)x(Ph2PN(iPr)PPh2)]+ structural isomers by reaction of triethylaluminum with a chromium N, N-bis(diarylphosphino)amine complex[Cr(CO)4(Ph2PN(iPr)PPh2)]+: an EPR and DFT investigation[J]. Organometallics, 2013,32(6):1924-1931. doi: 10.1021/om400029y

    84. [84]

      RUCKLIDGE A J, MCGUINNESS D S, TOOZE R P. Ethylene tetramerization with cationic chromium(Ⅰ) complexes[J]. Organometallics, 2007,26(10):2782-2787. doi: 10.1021/om0701975

    85. [85]

      SONG C, MAO G L, LIU Z H. Advances in mechanistic research of ethylene selective oligomerization catalyzed by homogeneous chromium-based catalysts[J]. Chinese J Org Chem, 2016,36(9):2105-2120.  

    86. [86]

      MCGUINNESS , DAVID S. Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond[J]. Chem Rev, 2011,111(3):2321-2341. doi: 10.1021/cr100217q

    87. [87]

      WERNER J V R, CRONJōG , STEYNBERG J P. A DFT study toward the mechanism of chromium-catalyzed ethylene trimerization[J]. Organometallics, 2004,23(6):1207-1222. doi: 10.1021/om0306269

    88. [88]

      BHADURI S, MUKHOPADHYAY S, KULKARNI S A. Density functional studies on chromium catalyzed ethylene trimerization[J]. J Organomet Chem, 2009,694(9/10):1297-1307.  

    89. [89]

      KLEMPSl C, PAYET E, MAGNA L, et al. PCNCP ligands in the chromium-catalyzed oligomerization of ethylene: tri- versus tetramerization[J]. 2009, 15(33): 8259-8268.

    90. [90]

      BUDZELAAR P H M. Ethene trimerization at CrI/CrIII-a density functional theory (DFT) study[J]. Can J Chem, 2009,87(7):832-837. doi: 10.1139/V09-022

    91. [91]

      LIU L, LIU Z, TANG S. What triggered the switching from ethylene-selective trimerization into tetramerization over the Cr/(2, 2'-dipicolylamine) catalysts?[J]. ACS Catal, 2019,9(11):10519-10527. doi: 10.1021/acscatal.9b03340

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(71)
  • Abstract views(3530)
  • HTML views(512)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return