Citation: You-Peng CAO, Xuan PANG, Sheng XIANG, Tian-Chang WANG, Li-Dong FENG, Xin-Chao BIAN, Gao LI, Xue-Si CHEN. Solution-Induced Co-crystallization in Poly(lactic acid)/Substituted Poly(lactic acid) Blends[J]. Chinese Journal of Applied Chemistry, ;2021, 38(1): 60-68. doi: 10.19894/j.issn.1000-0518.200236 shu

Solution-Induced Co-crystallization in Poly(lactic acid)/Substituted Poly(lactic acid) Blends

  • Corresponding author: Gao LI, ligao@ciac.ac.cn
  • Received Date: 6 August 2020
    Revised Date: 30 September 2020

    Fund Project: the National Natural Science Foundation of China 51973220the National Natural Science Foundation of China 51773194the National Natural Science Foundation of China 51973219the National Key Research and Development Program of China 2016YFB0302500

Figures(9)

  • The blends of poly(L-lactic acid) (PLLA) and poly(L-2-hydroxy-3-methylbutanoic acid) (PL-2H3MB) with different compositions were prepared by solution casting. The crystallization, melting and pyrolysis properties of the blends were investigated by differential scanning calorimetry (DSC), polarized optical microscope (POM), wide angle X-ray diffractometry (WAXD) and thermogravimetric analysis (TGA). The formation of PLLA and PL-2H3MB co-crystals was speculated due to the observation of the new melting peak in DSC first heating profile. The co-crysals significantly increased the initial crystallization temperature of PLLA and the characteristic diffraction peaks in WAXD profile were also shifted, which both confirmed the co-crystallization phenomenon in solution casting blend. At the same time, the thermal stability of PLLA/PL-2H3MB blends was better than that of neat PLLA or PL-2H3MB. The co-crystallization behavior of PLLA and PL-2H3MB may provided a new potential method to regulate the thermal stability, mechanical properties and degradation properties of PLLA.
  • 加载中
    1. [1]

      HAMAD K, KASEEM M, AYYOOB M. Polylactic acid blends: the future of green, light and tough[J]. Prog Polym Sci, 2018,85:83-127. doi: 10.1016/j.progpolymsci.2018.07.001

    2. [2]

      PANG X, ZHUANG X, TANG Z. Polylactic acid (PLA): research, development and industrialization[J]. Biotechnol J, 2010,5(11):1125-1136. doi: 10.1002/biot.201000135

    3. [3]

      BORDES P, POLLET E, AVÉROUS L. Nano-biocomposites: biodegradable polyester/nanoclay systems[J]. Prog Polym Sci, 2009,34(2):125-155. doi: 10.1016/j.progpolymsci.2008.10.002

    4. [4]

      VASANTHAN N, GEZER H. Thermally induced crystallization and enzymatic degradation studies of poly(L-lactic acid) films[J]. J Appl Polym Sci, 2013,127(6):4395-4401. doi: 10.1002/app.38015

    5. [5]

      CHEN Z, ZHANG S, WU F. Motion mode of poly(lactic acid) chains in film during strain-induced crystallization[J]. J Appl Polym Sci, 2016,133(6):1-10.  

    6. [6]

      TU C, JIANG S, LI H. Origin of epitaxial cold crystallization of poly(L-lactic acid) on highly oriented polyethylene substrate[J]. Macromolecules, 2013,46(13):5215-5222. doi: 10.1021/ma400743k

    7. [7]

      SAEIDLOU S, HUNEAULT M A, LI H. Poly(lactic acid) crystallization[J]. Prog Polym Sci, 2012,37(12):1657-1677. doi: 10.1016/j.progpolymsci.2012.07.005

    8. [8]

      WANG Z, XIA S, CHEN H. Effects of poly(ethylene glycol) grafted silica nanoparticles on crystallization behavior of poly(D-lactide)[J]. Polym Int, 2015,64(8):1066-1071. doi: 10.1002/pi.4914

    9. [9]

      CHENG H B, CHEN X S, XIAO H H. Promotion of crystallization in linear polylactide by multiarm-polylactide[J]. Chinese J Appl Chem, 2010,27(7):754-758.  

    10. [10]

      NING Z, JIANG N, GAN Z. Four-armed PCL-b-PDLA diblock copolymer: 1.synthesis, crystallization and degradation[J]. Polym Degrad Stab, 2014,107:120-128. doi: 10.1016/j.polymdegradstab.2014.05.016

    11. [11]

      TSUJI H. Poly(lactic acid) stereocomplexes: Adecade of progress[J]. Adv Drug Deliv Rev, 2016,107:97-135. doi: 10.1016/j.addr.2016.04.017

    12. [12]

      SIAKENG R, JAWAID M, ARIFFIN H. Natural fiber reinforced polylactic acid composites: a review[J]. Polym Compos, 2018,40(2):446-463.

    13. [13]

      BALAKRISHNAN H, HASSAN A, IMRAN M. Toughening of polylactic acid nanocomposites: a short review[J]. Polym Plast Technol Eng, 2012,51(2):175-192. doi: 10.1080/03602559.2011.618329

    14. [14]

      TSUJI H, OKUMURA A. Stereocomplex formation between enantiomeric substituted poly(lactide)s: blends of poly[(S)-2-hydroxybutyrate] and poly[(R)-2-hydroxybutyrate][J]. Macromolecules, 2009,42(19):7263-7266. doi: 10.1021/ma9015483

    15. [15]

      TSUJI H, OSANAI K, ARAKAWA Y. Stereocomplex crystallization between L- and D-configured staggered asymmetric random copolymers based on 2-hydroxyalkanoic acids[J]. Cryst Growth Des, 2018,18(10):6009-6019. doi: 10.1021/acs.cgd.8b00863

    16. [16]

      TSUJI H, SOBUE T. Stereocomplex crystallization and homo-crystallization of enantiomeric substituted poly(lactic acid)s, poly(2-hydroxy-3-methylbutanoic acid)s[J]. Polymer, 2015,69:186-192. doi: 10.1016/j.polymer.2015.05.056

    17. [17]

      ZHOU D, HUANG S, SUN J. Unique fractional crystallization of poly(L-lactide)/poly(L-2-hydroxyl-3-methylbutanoic acid) blend[J]. Macromolecules, 2017,50(12):4707-4714. doi: 10.1021/acs.macromol.7b00855

    18. [18]

      TSUJI H, HAYAKAWA T. Hetero-stereocomplex formation between substituted poly(lactic acid)s with linear and branched side chains, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid)[J]. Polymer, 2014,55(3):721-726. doi: 10.1016/j.polymer.2013.12.053

    19. [19]

      TSUJI H, HAYAKAWA T. Heterostereocomplex- and homocrystallization and thermal properties and degradation of substituted poly(lactic acid)s, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid)[J]. Macromol Chem Phys, 2016,217(22):2483-2493. doi: 10.1002/macp.201600359

    20. [20]

      TSUJI H, HOSOKAWA M, SAKAMOTO Y. Ternary stereocomplex crystallization of poly(L-2-hydroxybutanoic acid), poly(D-2-hydroxybutanoic acid), and poly(D-lactic acid) from the melt[J]. Polymer, 2013,54(8):2190-2198. doi: 10.1016/j.polymer.2013.02.003

    21. [21]

      TSUJI H, SOBUE T. Stereocomplexation of quaternary or ternary monomer units and dual stereocomplexation in enantiomeric binary and quaternary polymer blends of poly(2-hydroxybutanoic acid)s, poly(2-hydroxybutanoic acid-co-lactic acid)s, and poly(lactic acid)s[J]. RSC Adv, 2015,5(101):83331-83342. doi: 10.1039/C5RA17096F

    22. [22]

      TSUJI H, TAWARA T. Quaternary stereocomplex formation of substituted poly(lactic acid)s, L- and D-configured poly(2-hydroxybutanoic acid)s and L- and D-configured poly(2-hydroxy-3-methylbutanoic acid)s[J]. Polymer, 2015,68:57-64. doi: 10.1016/j.polymer.2015.05.004

    23. [23]

      TSUJI H, HOSOKAWA M, SAKAMOTO Y. Ternary stereocomplex formation of one L-configured and two D-configured optically active polyesters, poly(L-2-hydroxybutanoic acid), poly(D-2-hydroxybutanoic acid), and poly(D-lactic acid)[J]. ACS Macro Lett, 2012,1(6):687-691. doi: 10.1021/mz300155f

    24. [24]

      TSUJI H, NODA S, KIMURA T. Configurational molecular glue: one optically active polymer attracts two oppositely configured optically active polymers[J]. Sci Rep, 2017,745170. doi: 10.1038/srep45170

    25. [25]

      TSUJI H, MASAKI N, ARAKAWA Y. Ternary stereocomplex and hetero-stereocomplex crystallizability of substituted and unsubstituted poly(lactic acid)s[J]. Cryst Growth Des, 2018,18(1):521-530. doi: 10.1021/acs.cgd.7b01559

    26. [26]

      ZHU M, PAN S, WANG Y. Unravelling the correlation between charge mobility and cocrystallization in rod-rod block copolymers for high-performance field-effect transistors[J]. Angew Chemie Int Ed, 2018,130(28):8780-8784. doi: 10.1002/ange.201804585

    27. [27]

      DATTA J, NANDI A K. Cocrystallization of poly(vinylidene fluoride) and vinylidene effect of chain structure and crystallization conditions[J]. Polymer, 1994,35(22):4804-4812. doi: 10.1016/0032-3861(94)90736-6

    28. [28]

      MARUBAYASHI H, NOJIMA S. Crystallization and solid-state structure of poly(L-2-hydroxy-3-methylbutanoic acid)[J]. Macromolecules, 2016,49(15):5538-5547. doi: 10.1021/acs.macromol.5b02774

    29. [29]

      SATO S, GONDO D, WADA T. Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film[J]. J Appl Polym Sci, 2012,129(3):1607-1617.  

    30. [30]

      OUYANG, LEE, OUYANGW. Solvent-induced crystallization in poly(ethylene terephthalate) during mass transport: mechanism and boundary condition[J]. Macromolecules, 2004,37(20):7719-7723. doi: 10.1021/ma0400416

    31. [31]

      TRAN H T, MATSUSAKI M, AKASHI M. Enhanced thermal stability of polylactide by terminal conjugation groups[J]. J Electron Mater, 2016,45(5):2388-2394. doi: 10.1007/s11664-015-4329-9

    32. [32]

      FENG L, FENG S, BIAN X. Pyrolysis mechanism of poly(lactic acid) for giving lactide under the catalysis of tin[J]. Polym Degrad Stab, 2018,157:212-223. doi: 10.1016/j.polymdegradstab.2018.10.008

    33. [33]

      TSUJI H, FUKUI I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending[J]. Polymer, 2003,44(10):2891-2896. doi: 10.1016/S0032-3861(03)00175-7

    34. [34]

      YAN C, JIANG Y, HOU D. High-efficient crystallization promotion and melt reinforcement effect of diblock PDLA-b-PLLA copolymer on PLLA[J]. Polymer, 2020,186122021. doi: 10.1016/j.polymer.2019.122021

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    7. [7]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    8. [8]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    9. [9]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(14)
  • Abstract views(2692)
  • HTML views(485)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return