Solution-Induced Co-crystallization in Poly(lactic acid)/Substituted Poly(lactic acid) Blends
- Corresponding author: Gao LI, ligao@ciac.ac.cn
Citation:
You-Peng CAO, Xuan PANG, Sheng XIANG, Tian-Chang WANG, Li-Dong FENG, Xin-Chao BIAN, Gao LI, Xue-Si CHEN. Solution-Induced Co-crystallization in Poly(lactic acid)/Substituted Poly(lactic acid) Blends[J]. Chinese Journal of Applied Chemistry,
;2021, 38(1): 60-68.
doi:
10.19894/j.issn.1000-0518.200236
HAMAD K, KASEEM M, AYYOOB M. Polylactic acid blends: the future of green, light and tough[J]. Prog Polym Sci, 2018,85:83-127. doi: 10.1016/j.progpolymsci.2018.07.001
PANG X, ZHUANG X, TANG Z. Polylactic acid (PLA): research, development and industrialization[J]. Biotechnol J, 2010,5(11):1125-1136. doi: 10.1002/biot.201000135
BORDES P, POLLET E, AVÉROUS L. Nano-biocomposites: biodegradable polyester/nanoclay systems[J]. Prog Polym Sci, 2009,34(2):125-155. doi: 10.1016/j.progpolymsci.2008.10.002
VASANTHAN N, GEZER H. Thermally induced crystallization and enzymatic degradation studies of poly(L-lactic acid) films[J]. J Appl Polym Sci, 2013,127(6):4395-4401. doi: 10.1002/app.38015
CHEN Z, ZHANG S, WU F. Motion mode of poly(lactic acid) chains in film during strain-induced crystallization[J]. J Appl Polym Sci, 2016,133(6):1-10.
TU C, JIANG S, LI H. Origin of epitaxial cold crystallization of poly(L-lactic acid) on highly oriented polyethylene substrate[J]. Macromolecules, 2013,46(13):5215-5222. doi: 10.1021/ma400743k
SAEIDLOU S, HUNEAULT M A, LI H. Poly(lactic acid) crystallization[J]. Prog Polym Sci, 2012,37(12):1657-1677. doi: 10.1016/j.progpolymsci.2012.07.005
WANG Z, XIA S, CHEN H. Effects of poly(ethylene glycol) grafted silica nanoparticles on crystallization behavior of poly(D-lactide)[J]. Polym Int, 2015,64(8):1066-1071. doi: 10.1002/pi.4914
CHENG H B, CHEN X S, XIAO H H. Promotion of crystallization in linear polylactide by multiarm-polylactide[J]. Chinese J Appl Chem, 2010,27(7):754-758.
NING Z, JIANG N, GAN Z. Four-armed PCL-b-PDLA diblock copolymer: 1.synthesis, crystallization and degradation[J]. Polym Degrad Stab, 2014,107:120-128. doi: 10.1016/j.polymdegradstab.2014.05.016
TSUJI H. Poly(lactic acid) stereocomplexes: Adecade of progress[J]. Adv Drug Deliv Rev, 2016,107:97-135. doi: 10.1016/j.addr.2016.04.017
SIAKENG R, JAWAID M, ARIFFIN H. Natural fiber reinforced polylactic acid composites: a review[J]. Polym Compos, 2018,40(2):446-463.
BALAKRISHNAN H, HASSAN A, IMRAN M. Toughening of polylactic acid nanocomposites: a short review[J]. Polym Plast Technol Eng, 2012,51(2):175-192. doi: 10.1080/03602559.2011.618329
TSUJI H, OKUMURA A. Stereocomplex formation between enantiomeric substituted poly(lactide)s: blends of poly[(S)-2-hydroxybutyrate] and poly[(R)-2-hydroxybutyrate][J]. Macromolecules, 2009,42(19):7263-7266. doi: 10.1021/ma9015483
TSUJI H, OSANAI K, ARAKAWA Y. Stereocomplex crystallization between L- and D-configured staggered asymmetric random copolymers based on 2-hydroxyalkanoic acids[J]. Cryst Growth Des, 2018,18(10):6009-6019. doi: 10.1021/acs.cgd.8b00863
TSUJI H, SOBUE T. Stereocomplex crystallization and homo-crystallization of enantiomeric substituted poly(lactic acid)s, poly(2-hydroxy-3-methylbutanoic acid)s[J]. Polymer, 2015,69:186-192. doi: 10.1016/j.polymer.2015.05.056
ZHOU D, HUANG S, SUN J. Unique fractional crystallization of poly(L-lactide)/poly(L-2-hydroxyl-3-methylbutanoic acid) blend[J]. Macromolecules, 2017,50(12):4707-4714. doi: 10.1021/acs.macromol.7b00855
TSUJI H, HAYAKAWA T. Hetero-stereocomplex formation between substituted poly(lactic acid)s with linear and branched side chains, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid)[J]. Polymer, 2014,55(3):721-726. doi: 10.1016/j.polymer.2013.12.053
TSUJI H, HAYAKAWA T. Heterostereocomplex- and homocrystallization and thermal properties and degradation of substituted poly(lactic acid)s, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid)[J]. Macromol Chem Phys, 2016,217(22):2483-2493. doi: 10.1002/macp.201600359
TSUJI H, HOSOKAWA M, SAKAMOTO Y. Ternary stereocomplex crystallization of poly(L-2-hydroxybutanoic acid), poly(D-2-hydroxybutanoic acid), and poly(D-lactic acid) from the melt[J]. Polymer, 2013,54(8):2190-2198. doi: 10.1016/j.polymer.2013.02.003
TSUJI H, SOBUE T. Stereocomplexation of quaternary or ternary monomer units and dual stereocomplexation in enantiomeric binary and quaternary polymer blends of poly(2-hydroxybutanoic acid)s, poly(2-hydroxybutanoic acid-co-lactic acid)s, and poly(lactic acid)s[J]. RSC Adv, 2015,5(101):83331-83342. doi: 10.1039/C5RA17096F
TSUJI H, TAWARA T. Quaternary stereocomplex formation of substituted poly(lactic acid)s, L- and D-configured poly(2-hydroxybutanoic acid)s and L- and D-configured poly(2-hydroxy-3-methylbutanoic acid)s[J]. Polymer, 2015,68:57-64. doi: 10.1016/j.polymer.2015.05.004
TSUJI H, HOSOKAWA M, SAKAMOTO Y. Ternary stereocomplex formation of one L-configured and two D-configured optically active polyesters, poly(L-2-hydroxybutanoic acid), poly(D-2-hydroxybutanoic acid), and poly(D-lactic acid)[J]. ACS Macro Lett, 2012,1(6):687-691. doi: 10.1021/mz300155f
TSUJI H, NODA S, KIMURA T. Configurational molecular glue: one optically active polymer attracts two oppositely configured optically active polymers[J]. Sci Rep, 2017,745170. doi: 10.1038/srep45170
TSUJI H, MASAKI N, ARAKAWA Y. Ternary stereocomplex and hetero-stereocomplex crystallizability of substituted and unsubstituted poly(lactic acid)s[J]. Cryst Growth Des, 2018,18(1):521-530. doi: 10.1021/acs.cgd.7b01559
ZHU M, PAN S, WANG Y. Unravelling the correlation between charge mobility and cocrystallization in rod-rod block copolymers for high-performance field-effect transistors[J]. Angew Chemie Int Ed, 2018,130(28):8780-8784. doi: 10.1002/ange.201804585
DATTA J, NANDI A K. Cocrystallization of poly(vinylidene fluoride) and vinylidene effect of chain structure and crystallization conditions[J]. Polymer, 1994,35(22):4804-4812. doi: 10.1016/0032-3861(94)90736-6
MARUBAYASHI H, NOJIMA S. Crystallization and solid-state structure of poly(L-2-hydroxy-3-methylbutanoic acid)[J]. Macromolecules, 2016,49(15):5538-5547. doi: 10.1021/acs.macromol.5b02774
SATO S, GONDO D, WADA T. Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film[J]. J Appl Polym Sci, 2012,129(3):1607-1617.
OUYANG, LEE, OUYANGW. Solvent-induced crystallization in poly(ethylene terephthalate) during mass transport: mechanism and boundary condition[J]. Macromolecules, 2004,37(20):7719-7723. doi: 10.1021/ma0400416
TRAN H T, MATSUSAKI M, AKASHI M. Enhanced thermal stability of polylactide by terminal conjugation groups[J]. J Electron Mater, 2016,45(5):2388-2394. doi: 10.1007/s11664-015-4329-9
FENG L, FENG S, BIAN X. Pyrolysis mechanism of poly(lactic acid) for giving lactide under the catalysis of tin[J]. Polym Degrad Stab, 2018,157:212-223. doi: 10.1016/j.polymdegradstab.2018.10.008
TSUJI H, FUKUI I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending[J]. Polymer, 2003,44(10):2891-2896. doi: 10.1016/S0032-3861(03)00175-7
YAN C, JIANG Y, HOU D. High-efficient crystallization promotion and melt reinforcement effect of diblock PDLA-b-PLLA copolymer on PLLA[J]. Polymer, 2020,186122021. doi: 10.1016/j.polymer.2019.122021
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Renqing Lü , Shutao Wang , Fang Wang , Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Yan Xiao , Shuling Li , Yifan Li , Jianing Fan , Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
(A) cooling scans after heating at 176.5 ℃; (B) second heating scans after cooling from 176.5 ℃; (C) cooling scans after heating at 180.0 ℃; (D) cooling scans after heating at 190.0 ℃