Citation: You-Peng CAO, Xuan PANG, Sheng XIANG, Tian-Chang WANG, Li-Dong FENG, Xin-Chao BIAN, Gao LI, Xue-Si CHEN. Solution-Induced Co-crystallization in Poly(lactic acid)/Substituted Poly(lactic acid) Blends[J]. Chinese Journal of Applied Chemistry, ;2021, 38(1): 60-68. doi: 10.19894/j.issn.1000-0518.200236 shu

Solution-Induced Co-crystallization in Poly(lactic acid)/Substituted Poly(lactic acid) Blends

  • Corresponding author: Gao LI, ligao@ciac.ac.cn
  • Received Date: 6 August 2020
    Revised Date: 30 September 2020

    Fund Project: the National Natural Science Foundation of China 51973220the National Natural Science Foundation of China 51773194the National Natural Science Foundation of China 51973219the National Key Research and Development Program of China 2016YFB0302500

Figures(9)

  • The blends of poly(L-lactic acid) (PLLA) and poly(L-2-hydroxy-3-methylbutanoic acid) (PL-2H3MB) with different compositions were prepared by solution casting. The crystallization, melting and pyrolysis properties of the blends were investigated by differential scanning calorimetry (DSC), polarized optical microscope (POM), wide angle X-ray diffractometry (WAXD) and thermogravimetric analysis (TGA). The formation of PLLA and PL-2H3MB co-crystals was speculated due to the observation of the new melting peak in DSC first heating profile. The co-crysals significantly increased the initial crystallization temperature of PLLA and the characteristic diffraction peaks in WAXD profile were also shifted, which both confirmed the co-crystallization phenomenon in solution casting blend. At the same time, the thermal stability of PLLA/PL-2H3MB blends was better than that of neat PLLA or PL-2H3MB. The co-crystallization behavior of PLLA and PL-2H3MB may provided a new potential method to regulate the thermal stability, mechanical properties and degradation properties of PLLA.
  • 加载中
    1. [1]

      HAMAD K, KASEEM M, AYYOOB M. Polylactic acid blends: the future of green, light and tough[J]. Prog Polym Sci, 2018,85:83-127. doi: 10.1016/j.progpolymsci.2018.07.001

    2. [2]

      PANG X, ZHUANG X, TANG Z. Polylactic acid (PLA): research, development and industrialization[J]. Biotechnol J, 2010,5(11):1125-1136. doi: 10.1002/biot.201000135

    3. [3]

      BORDES P, POLLET E, AVÉROUS L. Nano-biocomposites: biodegradable polyester/nanoclay systems[J]. Prog Polym Sci, 2009,34(2):125-155. doi: 10.1016/j.progpolymsci.2008.10.002

    4. [4]

      VASANTHAN N, GEZER H. Thermally induced crystallization and enzymatic degradation studies of poly(L-lactic acid) films[J]. J Appl Polym Sci, 2013,127(6):4395-4401. doi: 10.1002/app.38015

    5. [5]

      CHEN Z, ZHANG S, WU F. Motion mode of poly(lactic acid) chains in film during strain-induced crystallization[J]. J Appl Polym Sci, 2016,133(6):1-10.  

    6. [6]

      TU C, JIANG S, LI H. Origin of epitaxial cold crystallization of poly(L-lactic acid) on highly oriented polyethylene substrate[J]. Macromolecules, 2013,46(13):5215-5222. doi: 10.1021/ma400743k

    7. [7]

      SAEIDLOU S, HUNEAULT M A, LI H. Poly(lactic acid) crystallization[J]. Prog Polym Sci, 2012,37(12):1657-1677. doi: 10.1016/j.progpolymsci.2012.07.005

    8. [8]

      WANG Z, XIA S, CHEN H. Effects of poly(ethylene glycol) grafted silica nanoparticles on crystallization behavior of poly(D-lactide)[J]. Polym Int, 2015,64(8):1066-1071. doi: 10.1002/pi.4914

    9. [9]

      CHENG H B, CHEN X S, XIAO H H. Promotion of crystallization in linear polylactide by multiarm-polylactide[J]. Chinese J Appl Chem, 2010,27(7):754-758.  

    10. [10]

      NING Z, JIANG N, GAN Z. Four-armed PCL-b-PDLA diblock copolymer: 1.synthesis, crystallization and degradation[J]. Polym Degrad Stab, 2014,107:120-128. doi: 10.1016/j.polymdegradstab.2014.05.016

    11. [11]

      TSUJI H. Poly(lactic acid) stereocomplexes: Adecade of progress[J]. Adv Drug Deliv Rev, 2016,107:97-135. doi: 10.1016/j.addr.2016.04.017

    12. [12]

      SIAKENG R, JAWAID M, ARIFFIN H. Natural fiber reinforced polylactic acid composites: a review[J]. Polym Compos, 2018,40(2):446-463.

    13. [13]

      BALAKRISHNAN H, HASSAN A, IMRAN M. Toughening of polylactic acid nanocomposites: a short review[J]. Polym Plast Technol Eng, 2012,51(2):175-192. doi: 10.1080/03602559.2011.618329

    14. [14]

      TSUJI H, OKUMURA A. Stereocomplex formation between enantiomeric substituted poly(lactide)s: blends of poly[(S)-2-hydroxybutyrate] and poly[(R)-2-hydroxybutyrate][J]. Macromolecules, 2009,42(19):7263-7266. doi: 10.1021/ma9015483

    15. [15]

      TSUJI H, OSANAI K, ARAKAWA Y. Stereocomplex crystallization between L- and D-configured staggered asymmetric random copolymers based on 2-hydroxyalkanoic acids[J]. Cryst Growth Des, 2018,18(10):6009-6019. doi: 10.1021/acs.cgd.8b00863

    16. [16]

      TSUJI H, SOBUE T. Stereocomplex crystallization and homo-crystallization of enantiomeric substituted poly(lactic acid)s, poly(2-hydroxy-3-methylbutanoic acid)s[J]. Polymer, 2015,69:186-192. doi: 10.1016/j.polymer.2015.05.056

    17. [17]

      ZHOU D, HUANG S, SUN J. Unique fractional crystallization of poly(L-lactide)/poly(L-2-hydroxyl-3-methylbutanoic acid) blend[J]. Macromolecules, 2017,50(12):4707-4714. doi: 10.1021/acs.macromol.7b00855

    18. [18]

      TSUJI H, HAYAKAWA T. Hetero-stereocomplex formation between substituted poly(lactic acid)s with linear and branched side chains, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid)[J]. Polymer, 2014,55(3):721-726. doi: 10.1016/j.polymer.2013.12.053

    19. [19]

      TSUJI H, HAYAKAWA T. Heterostereocomplex- and homocrystallization and thermal properties and degradation of substituted poly(lactic acid)s, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid)[J]. Macromol Chem Phys, 2016,217(22):2483-2493. doi: 10.1002/macp.201600359

    20. [20]

      TSUJI H, HOSOKAWA M, SAKAMOTO Y. Ternary stereocomplex crystallization of poly(L-2-hydroxybutanoic acid), poly(D-2-hydroxybutanoic acid), and poly(D-lactic acid) from the melt[J]. Polymer, 2013,54(8):2190-2198. doi: 10.1016/j.polymer.2013.02.003

    21. [21]

      TSUJI H, SOBUE T. Stereocomplexation of quaternary or ternary monomer units and dual stereocomplexation in enantiomeric binary and quaternary polymer blends of poly(2-hydroxybutanoic acid)s, poly(2-hydroxybutanoic acid-co-lactic acid)s, and poly(lactic acid)s[J]. RSC Adv, 2015,5(101):83331-83342. doi: 10.1039/C5RA17096F

    22. [22]

      TSUJI H, TAWARA T. Quaternary stereocomplex formation of substituted poly(lactic acid)s, L- and D-configured poly(2-hydroxybutanoic acid)s and L- and D-configured poly(2-hydroxy-3-methylbutanoic acid)s[J]. Polymer, 2015,68:57-64. doi: 10.1016/j.polymer.2015.05.004

    23. [23]

      TSUJI H, HOSOKAWA M, SAKAMOTO Y. Ternary stereocomplex formation of one L-configured and two D-configured optically active polyesters, poly(L-2-hydroxybutanoic acid), poly(D-2-hydroxybutanoic acid), and poly(D-lactic acid)[J]. ACS Macro Lett, 2012,1(6):687-691. doi: 10.1021/mz300155f

    24. [24]

      TSUJI H, NODA S, KIMURA T. Configurational molecular glue: one optically active polymer attracts two oppositely configured optically active polymers[J]. Sci Rep, 2017,745170. doi: 10.1038/srep45170

    25. [25]

      TSUJI H, MASAKI N, ARAKAWA Y. Ternary stereocomplex and hetero-stereocomplex crystallizability of substituted and unsubstituted poly(lactic acid)s[J]. Cryst Growth Des, 2018,18(1):521-530. doi: 10.1021/acs.cgd.7b01559

    26. [26]

      ZHU M, PAN S, WANG Y. Unravelling the correlation between charge mobility and cocrystallization in rod-rod block copolymers for high-performance field-effect transistors[J]. Angew Chemie Int Ed, 2018,130(28):8780-8784. doi: 10.1002/ange.201804585

    27. [27]

      DATTA J, NANDI A K. Cocrystallization of poly(vinylidene fluoride) and vinylidene effect of chain structure and crystallization conditions[J]. Polymer, 1994,35(22):4804-4812. doi: 10.1016/0032-3861(94)90736-6

    28. [28]

      MARUBAYASHI H, NOJIMA S. Crystallization and solid-state structure of poly(L-2-hydroxy-3-methylbutanoic acid)[J]. Macromolecules, 2016,49(15):5538-5547. doi: 10.1021/acs.macromol.5b02774

    29. [29]

      SATO S, GONDO D, WADA T. Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film[J]. J Appl Polym Sci, 2012,129(3):1607-1617.  

    30. [30]

      OUYANG, LEE, OUYANGW. Solvent-induced crystallization in poly(ethylene terephthalate) during mass transport: mechanism and boundary condition[J]. Macromolecules, 2004,37(20):7719-7723. doi: 10.1021/ma0400416

    31. [31]

      TRAN H T, MATSUSAKI M, AKASHI M. Enhanced thermal stability of polylactide by terminal conjugation groups[J]. J Electron Mater, 2016,45(5):2388-2394. doi: 10.1007/s11664-015-4329-9

    32. [32]

      FENG L, FENG S, BIAN X. Pyrolysis mechanism of poly(lactic acid) for giving lactide under the catalysis of tin[J]. Polym Degrad Stab, 2018,157:212-223. doi: 10.1016/j.polymdegradstab.2018.10.008

    33. [33]

      TSUJI H, FUKUI I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending[J]. Polymer, 2003,44(10):2891-2896. doi: 10.1016/S0032-3861(03)00175-7

    34. [34]

      YAN C, JIANG Y, HOU D. High-efficient crystallization promotion and melt reinforcement effect of diblock PDLA-b-PLLA copolymer on PLLA[J]. Polymer, 2020,186122021. doi: 10.1016/j.polymer.2019.122021

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Tong WANGXuefang ZHUQi GAOHongbo ZHANGChao RENLixia GE . Luminescence and thermal stability of Tb3+-Eu3+ doped glass-ceramics containing Na8.12Y1.293Si6O18 crystal phase. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2237-2250. doi: 10.11862/CJIC.20250137

    3. [3]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Xiqing Liang Tian Zhao Jiawei Li Haohui Tan Hai Chen Liyan Zeng . Pentaerythritol’s Journey of Making Friends. University Chemistry, 2025, 40(10): 175-185. doi: 10.12461/PKU.DXHX202412009

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    7. [7]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    8. [8]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    9. [9]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    14. [14]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    15. [15]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    16. [16]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    17. [17]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    18. [18]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

Metrics
  • PDF Downloads(15)
  • Abstract views(4871)
  • HTML views(741)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return