Citation: Jun-Hui LIU, Xu-Ming GUO, Ya-Kun SONG, Xin-Wen GUO. Recent Advances in Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 157-169. doi: 10.19894/j.issn.1000-0518.200229 shu

Recent Advances in Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane

  • Corresponding author: Ya-Kun SONG, songyakunly@163.com Xin-Wen GUO, guoxw@dlut..edu.cn
  • Received Date: 4 August 2020
    Accepted Date: 13 October 2020

    Fund Project: the National Natural Science Foundation of China 21908043the Key Project of Henan Province 192102310209

Figures(7)

  • Energy utilization in the world is facing great challenges and it is very important to develop green and clean energy. Hydrolysis of ammonia borane is one of the effective routes to produce clean and renewable hydrogen and suitable catalysts can improve the efficiency of hydrogen production in the hydrolysis reaction. The development of efficient and safe catalysts has been the focus and hotspot in this field. This paper reviews the role of active metal components and supports in the preparation of catalysts and the catalytic hydrolysis of ammonia borane based on the key factors that affect the catalytic performance. Finally, the current problems are summarized and the future development of this field is pointed out.
  • 加载中
    1. [1]

      SARTBAEVA A, KUZNETSOV V L, WELLS S A. Hydrogen nexus in a sustainable energy future[J]. Energy Environ Sci, 2008,1(1):79-85. doi: 10.1039/b810104n

    2. [2]

      SCHAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001,414(6861):353-358. doi: 10.1038/35104634

    3. [3]

      ZHAN W W, ZHU Q L, XU Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts[J]. ACS Catal, 2016,6(10):6892-6905. doi: 10.1021/acscatal.6b02209

    4. [4]

      LU Z, SCHWEIGHAUSER L, HAUSMANN H. Metal-free ammonia-borane dehydrogenation catalyzed by a bis(borane) Lewis acid[J]. Angew Chem Int Ed, 2015,54(51):15556-15559. doi: 10.1002/anie.201508360

    5. [5]

      YAO Q L, DING Y Y, LU Z H. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides[J]. Inorg Chem Front, 2020,7:3837-3874. doi: 10.1039/D0QI00766H

    6. [6]

      LI Y, DENG Y Z, YU J L. Research progress in hydrogen production from decomposition of ammonia borane and its regeneration[J]. Chem Ind Eng Prog, 2019,38(12):5330-5338.  

    7. [7]

      SHRESTHA R, DIYABALANAGE H, SEMELSBERGER T. Catalytic dehydrogenation of ammonia borane in non-aqueous medium[J]. Int J Hydrogen Energy, 2009,34(6):2616-2621. doi: 10.1016/j.ijhydene.2009.01.014

    8. [8]

      CALISKAN S, ZAHMAKIRAN M, OZKAR S. Zeolite confined rhodium(0) nanoclusters as highly active, reusable, and long-lived catalyst in the methanolysis of ammonia-borane[J]. Appl Catal B, 2010,93(3/4):387-394.  

    9. [9]

      YAMADA Y, YANO K, XU Q. Cu/Co3O4 nanoparticles as catalysts for hydrogen evolution from ammonia borane by hydrolysis[J]. J Phys Chem C, 2010,114:16456-16462. doi: 10.1021/jp104291s

    10. [10]

      XU Q, CHANDRA M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources, 2006,163(1):364-370. doi: 10.1016/j.jpowsour.2006.09.043

    11. [11]

      CHANDRA M, XU Q. A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia-borane[J]. J Power Sources, 2006,156(2):190-194. doi: 10.1016/j.jpowsour.2005.05.043

    12. [12]

      CHANDRA M, XU Q. Room Temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. J Power Sources, 2007,168(1):135-142. doi: 10.1016/j.jpowsour.2007.03.015

    13. [13]

      LI N P. Ru-based catalysts for catalytic hydrogen production ammonia-borane hydrolysis[D]. 2019, Guilin: Guilin University of Electronic Science and Technology.

    14. [14]

      ZHOU Q X, YANG H X, XU C X. Nanoporous Ru as highly efficient catalyst for hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016,41(30):12714-12721. doi: 10.1016/j.ijhydene.2016.05.128

    15. [15]

      AKBAYRAK S, TONBUL Y, ZKAR S. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Dalton Trans, 2016,45(27):10969-10978. doi: 10.1039/C6DT01117A

    16. [16]

      DU C, AO Q, CAO N. Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2015,40(18):6180-6187. doi: 10.1016/j.ijhydene.2015.03.070

    17. [17]

      ZHONG F Y, WANG Q, XU C L. Catalytically active rhodium nanoparticles stabilized by nitrogen doped carbon for the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2018,43(49):22273-22280. doi: 10.1016/j.ijhydene.2018.10.064

    18. [18]

      AKBAYRAK, GENÇTVRK, MORKAN. Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. RSC Adv, 2014,4(26):13742-13748. doi: 10.1039/C4RA00469H

    19. [19]

      KARAHAN S, ZAHMAKIRAN M, OZKAR S. A facile one-step synthesis of polymer supported rhodium nanoparticles in organic medium and their catalytic performance in the dehydrogenation of ammonia-borane[J]. Chem Commun, 2012,48(8):1180-1182. doi: 10.1039/C1CC15864C

    20. [20]

      TONBUL Y, AKBAYRAK S, OZKAR S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci, 2019,553:581-587. doi: 10.1016/j.jcis.2019.06.038

    21. [21]

      CHEN J M, LU Z H, WANG Y Q. Magnetically recyclable Ag/SiO2-CoFe2O4 nanocomposite as a highly active and reusable catalyst for H2 production[J]. Int J Hydrogen Energy, 2015,40(14):4777-4785. doi: 10.1016/j.ijhydene.2015.02.054

    22. [22]

      XU P, LU W W, ZHANG J J. Efficient hydrolysis of ammonia borane for hydrogen evolution catalyzed by plasmonic Ag@Pd core-shell nanocubes[J]. ACS Sustainable Chem Eng, 2020,8(33):12366-12377. doi: 10.1021/acssuschemeng.0c02276

    23. [23]

      AIJAZ A, KARKAMKAR A, CHOI Y. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J]. J Am Chem Soc, 2012,134(34):13926-13929. doi: 10.1021/ja3043905

    24. [24]

      CHEN W Y, JI J, DUAN X Z. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Chem Commun, 2014,50(17):2142-2144. doi: 10.1039/c3cc48027e

    25. [25]

      TONBUL Y, AKBAYRAK S, ZKAR S. Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016,41(26):11154-11162. doi: 10.1016/j.ijhydene.2016.04.058

    26. [26]

      AKBAYRAK S, KAYA M, VOLKAN M. Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: a highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane[J]. Appl Catal B, 2014,147:387-393. doi: 10.1016/j.apcatb.2013.09.023

    27. [27]

      XI P X, CHEN F, XIE G Q. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Nanoscale, 2012,4(18):5597-5601. doi: 10.1039/c2nr31010d

    28. [28]

      HU H, XIN J H, HU H. Synthesis and stabilization of metal nanocatalysts for reduction reactions-a review[J]. J Mater Chem A, 2015,3:11157-11182. doi: 10.1039/C5TA00753D

    29. [29]

      JIANG X, XIONG Y X, WANG Y F. Treelike two-level PdxAgy nanocrystals tailored for bifunctional fuel cell electrocatalysis[J]. J Mater Chem A, 2019,7:5248-5257. doi: 10.1039/C8TA11538A

    30. [30]

      ZHANG N, SHAO Q, XIAO X H. Advanced catalysts derived from composition-segregated platinum-nickel nanostructures: new opportunities and challenges[J]. Adv Funct Mater, 2019,29(13):1808161-1080188. doi: 10.1002/adfm.201808161

    31. [31]

      FANG H, YANG J H, WEN M. Nanoalloy materials for chemical catalysis[J]. Adv Mater, 2018,30(17):1705698-1705707. doi: 10.1002/adma.201705698

    32. [32]

      LI S, ZHOU Y T, KANG X. A Simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid[J]. Adv Mater, 2019,31:1806781-1806787. doi: 10.1002/adma.201806781

    33. [33]

      YAO K S, ZHAO C S, WANG N. An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis[J]. Nanoscale, 2020,12(2):638-647. doi: 10.1039/C9NR07144J

    34. [34]

      RAKAP M. PVP-stabilized Ru-Rh nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Alloys Comp, 2015,649:1025-1030. doi: 10.1016/j.jallcom.2015.07.249

    35. [35]

      RAKAP M. Hydrogen generation from hydrolysis of ammonia borane in the presence of highly efficient poly(n-vinyl-2-pyrrolidone)-protected platinum-ruthenium nanoparticles[J]. Appl Catal A, 2014,478:15-20. doi: 10.1016/j.apcata.2014.03.022

    36. [36]

      RAKAP M. The highest catalytic activity in the hydrolysis of ammonia borane by poly(n-vinyl-2-pyrrolidone)-protected palladium-rhodium nanoparticles for hydrogen generation[J]. Appl Catal B, 2015,163:129-134. doi: 10.1016/j.apcatb.2014.07.050

    37. [37]

      WANG C L, TUNINETTI J, WANG Z. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release[J]. J Am Chem Soc, 2017,139(33):11610-11615. doi: 10.1021/jacs.7b06859

    38. [38]

      METIN O, OZKAR S. Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water-soluble polymer-stabilized cobalt(0) nanoclusters catalyst[J]. Energy Fuels, 2009,23:3517-3526. doi: 10.1021/ef900171t

    39. [39]

      RAKAP M, ZKAR S. Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane[J]. Catal Today, 2005,98(1):17-25.  

    40. [40]

      YAO Q, LU Z H, ZHANG Z J. One-Pot Synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J]. Sci Rep, 2014,4:7597-7604.  

    41. [41]

      LI J, ZHU Q L, XU Q. Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal-organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation[J]. Catal Sci Technol, 2015,5:525-530. doi: 10.1039/C4CY01049C

    42. [42]

      SINGH A, XU Q. Synergistic catalysis over Bimetallic alloy nanoparticles[J]. ChemCatChem, 2013,5(3):652-676. doi: 10.1002/cctc.201200591

    43. [43]

      XU M, HUAI X L, ZHANG H. Highly dispersed CuCo nanoparticles supported on reduced graphene oxide as high-activity catalysts for hydrogen evolution from ammonia borane hydrolysis[J]. J Nanopart Res, 2018,20(12):329-341. doi: 10.1007/s11051-018-4429-6

    44. [44]

      WANG H A, ZHOU L M, HAN M. CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane[J]. J Alloys Compd, 2015,651:382-388. doi: 10.1016/j.jallcom.2015.08.139

    45. [45]

      ZHENG H C, FENG K, SHANG Y P. Cube-like CuCoO nanostructures on reduced graphene oxide for H2 Generation from ammonia borane[J]. Inorg Chem Front, 2018,5:1180-1187. doi: 10.1039/C8QI00183A

    46. [46]

      FENG K, ZHONG J, ZHAO B H. CuxCo1-xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia-borane[J]. Angew Chem Int Ed, 2016,55:1-6. doi: 10.1002/anie.201510990

    47. [47]

      YANG Y W, ZHANG F, WANG H L. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation[J]. J Nanomater, 2014,2014:1-9.  

    48. [48]

      WANG Q T, ZHANG Z, LIU J. Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: highly efficient hydrolysis of ammonia borane[J]. Mater Chem Phys, 2017,204:58-61.  

    49. [49]

      FENG W, LAN Y, NAN C. In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane[J]. Int J Hydrogen Energy, 2014,39(7):3371-3380. doi: 10.1016/j.ijhydene.2013.12.113

    50. [50]

      YEN H, SEO Y, KALIAGUINE S. Role of metal-support interactions, particle size, and metal-metal synergy in CuNi nanocatalysts for H2 generation[J]. ACS Catal, 2015,5(9):5505-5511. doi: 10.1021/acscatal.5b00869

    51. [51]

      LU Z H, LI J P, ZHU A L. Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2013,38(13):5330-5337. doi: 10.1016/j.ijhydene.2013.02.076

    52. [52]

      LIANG Z J, XIAO X Z, YU X Y. Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane[J]. J Alloys Comp, 2018,741:501-508. doi: 10.1016/j.jallcom.2017.12.151

    53. [53]

      LIAO J Y, FENG Y F, LIN W M. CuO-NiO/Co3O4 hybrid nanoplates as highly active catalyst for ammonia borane hydrolysis[J]. Int J Hydrogen Energy, 2020,45(15):8168-8176. doi: 10.1016/j.ijhydene.2020.01.155

    54. [54]

      YAO Q L, YANG K, HONG X L. Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles[J]. Catal Sci Technol, 2018,8(3):870-877. doi: 10.1039/C7CY02365K

    55. [55]

      QI X H, LI X C, CHEN B. Highly active nanoreactors: patchlike or thick Ni coating on Pt nanoparticles based on confined catalysis[J]. ACS Appl Mater Interfaces, 2016,8:1922-1928. doi: 10.1021/acsami.5b10083

    56. [56]

      LI Z, HE T, MATSUMURA D. Atomically dispersed Pt on the surface of Ni particles: synthesis and catalytic function in hydrogen generation from aqueous ammonia-borane[J]. ACS Catal, 2017,7:6762-6769. doi: 10.1021/acscatal.7b01790

    57. [57]

      MORI K, MIYAWAKI K, YAMASHITA H. Ru and Ru-Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia-borane[J]. ACS Catal, 2016,6(5):3128-3135. doi: 10.1021/acscatal.6b00715

    58. [58]

      CAO N, SU J, LUO W. Hydrolytic dehydrogenation of ammonia borane and methylamine borane catalyzed by graphene supported Ru@Ni core-shell nanoparticles[J]. Int J Hydrogen Energy, 2014,39(1):426-435. doi: 10.1016/j.ijhydene.2013.10.059

    59. [59]

      CHEN Y Z, XU Q, YU S H. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis[J]. Small, 2014,11(1):71-76.  

    60. [60]

      QU X, YU Z, LI Z. CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2017,42(51):30037-30043. doi: 10.1016/j.ijhydene.2017.10.040

    61. [61]

      CIFTCI N, METIN O. Monodisperse nickel-palladium alloy nanoparticles supported on reduced graphene oxide as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2014,39:18863-18870. doi: 10.1016/j.ijhydene.2014.09.060

    62. [62]

      LI X J, ZENG C M, FAN G Y. Magnetic RuCo nanoparticles supported on two-dimensional titanium carbide as highly active catalysts for the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2015,40(30):9217-9224. doi: 10.1016/j.ijhydene.2015.05.168

    63. [63]

      ZHOU X, MENG X F, WANG J M. Boron nitride supported NiCoP nanoparticles as noble metal-free catalyst for highly efficient hydrogen generation from ammonia borane[J]. Int J Hydrogen Energy, 2019,44(10):4764-4770. doi: 10.1016/j.ijhydene.2019.01.026

    64. [64]

      FENG X, ZHAO Y H, LIU D K. Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst[J]. Int J Hydrogen Energy, 2018,43:17112-17120. doi: 10.1016/j.ijhydene.2018.07.055

    65. [65]

      QU X P, JIANG R, LI Q. Hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity, efficiency and mechanism[J]. Green Chem, 2019,21:850-860. doi: 10.1039/C8GC03536A

    66. [66]

      LIN Y X, YANG L, JIANG H L. Boosted reactivity of ammonia borane dehydrogenation over Ni/Ni2P heterostructure[J]. J Phys Chem Lett, 2019,10:1048-1054. doi: 10.1021/acs.jpclett.9b00122

    67. [67]

      FU Z G, XU Y, CHAN L F. Highly efficient hydrolysis of ammonia borane by anion (-OH, F-, Cl-)-tuned interactions between reactant molecules and CoP nanoparticles[J]. Chem Commun, 2017,53(4):705-708. doi: 10.1039/C6CC08120G

    68. [68]

      PENG C, KANG L, CAO S. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane[J]. Angew Chem Int Ed, 2015,127:15951-15955. doi: 10.1002/ange.201508113

    69. [69]

      Hou C C, Li Q, Wang C J. Ternary Ni-Co-P nanoparticles and their hybrids with graphene as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane[J]. Energy Environ Sci, 2017,10(8):1770-1776. doi: 10.1039/C7EE01553D

    70. [70]

      LI W A, NIE X W, JIANG X. ZrO2 Support imparts superior activity and stability of Co Catalysts for CO2 methanation[J]. Appl Catal B, 2018,220:397-408. doi: 10.1016/j.apcatb.2017.08.048

    71. [71]

      WAN H J, WU B S, XIANG H W. Fischer-tropsch synthesis: influence of support incorporation manner on metal dispersion, metal-support interaction, and activities of iron catalysts[J]. ACS Catal, 2012,2(9):1877-1883. doi: 10.1021/cs200584s

    72. [72]

      AKBAYRAK S, TONBU Y, ÖZKAR S. Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J]. Appl Catal B, 2016,198:162-170. doi: 10.1016/j.apcatb.2016.05.061

    73. [73]

      ZAHMAKIRAN M, AYVAL T, AKBAYRAK S. Zeolite framework stabilized nickel(0) nanoparticles: active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride[J]. Catal Today, 2011,170(1):76-84. doi: 10.1016/j.cattod.2010.09.022

    74. [74]

      GIL-SAN-MILLAN R, GRAU-ATIENZA A, JOHNSON D T. Improving hydrogen production from the hydrolysis of ammonia borane by using multifunctional catalysts[J]. Int J Hydrogen Energy, 2018,43(36):17100-17111. doi: 10.1016/j.ijhydene.2018.06.137

    75. [75]

      ZHONG W D, TIAN X K, YANG C. Active 3D Pd/graphene aerogel catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. Int J Hydrogen Energy, 2016,41:15225-15235. doi: 10.1016/j.ijhydene.2016.06.263

    76. [76]

      ZHAO B H, FENG K, WANG Y. PtxNi10-xO Nanoparticles supported on N-doped graphene oxide with a synergetic effect for highly efficient hydrolysis of ammonia borane[J]. Catal Sci Technol, 2017,7:5135-5142. doi: 10.1039/C7CY01742A

    77. [77]

      YAO Q L, LU Z H, YANG Y W. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res, 2018,11(8):4412-4422. doi: 10.1007/s12274-018-2031-y

    78. [78]

      YAO Q L, LU Z H, HUANG W. High Pt-like activity of the Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. J Mater Chem A, 2016,4:8579-8583. doi: 10.1039/C6TA02004F

    79. [79]

      KANG K, GU X J, GUO L L. Efficient catalytic hydrolytic dehydrogenation of ammonia borane over surfactant-free bimetallic nanoparticles immobilized on amine-functionalized carbon nanotubes[J]. Int J Hydrogen Energy, 2015,40:12315-12324. doi: 10.1016/j.ijhydene.2015.07.081

    80. [80]

      GUO L L, GU X J, KANG K. Porous nitrogen-doped carbon-immobilized bimetallic nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Mater Chem A, 2015,3:22807-22815. doi: 10.1039/C5TA05487G

    81. [81]

      WANG W, LU Z H, LUO Y. Mesoporous carbon nitride supported Pd and Pd-Ni nanoparticles as highly efficient catalyst for catalytic hydrolysis of NH3BH3[J]. ChemCatChem, 2018,10(7):1620-1626. doi: 10.1002/cctc.201701989

    82. [82]

      CHENG N Y, REN L, XU X. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts[J]. Adv Energy Mater, 2018,8(25):1801257-1801277. doi: 10.1002/aenm.201801257

    83. [83]

      DANG S, ZHU Q L, XU Q. Nanomaterials derived from metal-organic frameworks[J]. Nat Rev Mater, 2017,3:17075-17088.  

    84. [84]

      INDRA A, SONG T, PAIK U. Metal organic framework derived materials: progress and prospects for the energy conversion and storage[J]. Adv Mater, 2018,30(39):1705146-1705170. doi: 10.1002/adma.201705146

    85. [85]

      LIU J H, ZHANG A F, LIU M. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. J CO2 Util, 2017,21:100-107. doi: 10.1016/j.jcou.2017.06.011

    86. [86]

      LI W H, ZHANG A F, JIANG X. Low temperature CO2 methanation: ZIF-67-Derived Co-based porous carbon catalysts with controlled crystal morphology and size[J]. ACS Sustainable Chem Eng, 2017,5(9):7824-7831. doi: 10.1021/acssuschemeng.7b01306

    87. [87]

      ZHANG X L, ZHANG D X, CHANG G G. Bimetallic (Zn/Co) MOFs-derived highly dispersed metallic Co/HPC for completely hydrolytic dehydrogenation of ammonia-borane[J]. Ind Eng Chem Res, 2019,58(17):7209-7216. doi: 10.1021/acs.iecr.9b00897

    88. [88]

      PERRYIV J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chem Soc Rev, 2009,38:1400-1417. doi: 10.1039/b807086p

    89. [89]

      LI H, Eddaoudi M, O'KEEFFE M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999,402:276-279. doi: 10.1038/46248

    90. [90]

      CUI Y J, LI B, HE H J. Metal-organic frameworks as platforms for functional materials[J]. Acc Chem Res, 2016,49:483-493. doi: 10.1021/acs.accounts.5b00530

    91. [91]

      ZHANG H B, NAI J W, YU L. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule, 2017,1:77-107. doi: 10.1016/j.joule.2017.08.008

    92. [92]

      FEREY G, MELLOT-DRAZNIEKS C, SERRE C. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005,309(5743):2040-2042. doi: 10.1126/science.1116275

    93. [93]

      ZHU Q L, LI J, XU Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance[J]. J Am Chem Soc, 2013,135(28):10210-10213. doi: 10.1021/ja403330m

    94. [94]

      GAO D D, ZHANG Y H, ZHOU L Q. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane[J]. Appl Surf Sci, 2017,427:114-122.  

    95. [95]

      YANG K Z, ZHOU L Q, XIONG X. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane[J]. Micro Meso Mater, 2016,225:1-8. doi: 10.1016/j.micromeso.2015.12.018

    96. [96]

      NAN C, TENG L, JUN S. Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes[J]. New J Chem, 2014,38:4032-4035. doi: 10.1039/C4NJ00739E

    97. [97]

      CHEN Y Z, LIANG L F, YANG Q H. A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal-organic framework for highly efficient catalysis[J]. Mater Horiz, 2015,2:606-612. doi: 10.1039/C5MH00125K

    98. [98]

      WEN L, SU J, WU X J. Ruthenium supported on MIL-96:an efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2014,39:17129-17135. doi: 10.1016/j.ijhydene.2014.07.179

    99. [99]

      LU D, YU G F, LI Y. RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane[J]. J Alloys Comp, 2017,694:662-671. doi: 10.1016/j.jallcom.2016.10.055

    100. [100]

      YANG K Z, ZHOU L Q, YU G F. Ru nanoparticles supported on MIL-53(Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016,41(15):6300-6309. doi: 10.1016/j.ijhydene.2016.02.104

    101. [101]

      KANG J X, CHEN T W, ZHANG D F. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation[J]. Nano Energy, 2016,23:145-152. doi: 10.1016/j.nanoen.2016.03.017

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(102)
  • Abstract views(4423)
  • HTML views(886)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return