Citation: Chun-Hua ZHANG, Xiao-Bo ZHAO, Yue-Jun LI, Da-Wei SUN. Preparation of (BiO)2CO3-Bi-TiO2 Composite Nanofibers and Its Photocatalytic Degradation of Antibiotics[J]. Chinese Journal of Applied Chemistry, ;2021, 38(1): 99-106. doi: 10.19894/j.issn.1000-0518.200203 shu

Preparation of (BiO)2CO3-Bi-TiO2 Composite Nanofibers and Its Photocatalytic Degradation of Antibiotics

  • Corresponding author: Xiao-Bo ZHAO, bcxibozhao@163.com
  • Received Date: 6 July 2020
    Accepted Date: 21 August 2020

    Fund Project: the National Natural Science Foundation of China 21573003Jilin Province Education Department "13th Five-Year Plan" Science and Technology Research Project 201638

Figures(8)

  • The heterojunction type Bi-TiO2, (BiO)2CO3-TiO2 and (BiO)2CO3-Bi-TiO2 composite nanofibers were synthesized via a facile one-step solvothermal method, using electrospun TiO2 nanofibers as the substrate and glucose as reducing agent, in acidic or alkaline environments. The obtained materials were characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence (PL) spectroscopy. The photocatalytic activities of the samples were evaluated by photodegradation of lomefloxacin, ciprofloxacin and norfloxacin as the target pollutants, under simulated sunlight irradiation, and the degradation reaction mechanism was explored. The results show that (BiO)2CO3-Bi-TiO2 photocatalyst exhibits the highest photocatalytic activity, with the degradation rate of norfloxacin, lomefloxacin and ciprofloxacin of 93.2%, 97.5% and 100%, respectively, under simulated sunlight irradiation for 60 min.
  • 加载中
    1. [1]

      BURCH T R, SADOWSKY M J, LAPARA T M. Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids[J]. Environ Sci Technol, 2014,48:5620-5627. doi: 10.1021/es501098g

    2. [2]

      CHRISTGEN B, YANG Y, AHAMMAD S Z. Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater[J]. Environ Sci Technol, 2015,49(4):2577-2584. doi: 10.1021/es505521w

    3. [3]

      HUO Z H, YANG X S, CHEN X L. Preparation of Ag/two-dimensional graphitic carbon nitride/reduced graphene oxide composite and its photocatalytic degradation of antibiotics[J]. Chinese J Appl Chem, 2020,27(4):471-480.  

    4. [4]

      LI D, ZENG S Y, HE M. Water disinfection byproducts induce antibiotics resistance-role of environmental pollutants in resistance phenomena[J]. Environ Sci Technol, 2016,50(6):3193-3201. doi: 10.1021/acs.est.5b05113

    5. [5]

      LI S, HU J Y. Photolytic and photocatalytic degradation of tetracycline; effect of humic acid on degradation kinetics and mechanisms[J]. J Hazard Mater, 2016,318(15):134-144.

    6. [6]

      YAN W, YAN L, JING C Y. Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: structure, photoactivity and degradation mechanisms[J]. Appl Catal B: Environ, 2019,244(5):475-485.

    7. [7]

      IAKOVIDES I C, MICHAEL-KORDATOU I, MOREIRA N F F. Continuous ozonation of urban wastewater: removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity[J]. Water Res, 2019,159:333-347. doi: 10.1016/j.watres.2019.05.025

    8. [8]

      AHMAD H, KAMARUDIN S K, MINGGU L J. Hydrogen from photo-catalytic water splitting process: a review[J]. Renew Sustainable Energy Rev, 2015,43:599-610. doi: 10.1016/j.rser.2014.10.101

    9. [9]

      HE W J, SUN Y J, JIANG G M. Defective Bi4MoO9/Bi metal Core/Shell heterostructure: enhanced visible light photocatalysis and reaction mechanism[J]. Appl Catal B: Environ, 2018,239:619-627. doi: 10.1016/j.apcatb.2018.08.064

    10. [10]

      DONG F, ZHAO Z W, SUN Y J. An advanced semimetal-organic Bi spheres g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification[J]. Environ Sci Technol, 2015,49(20):12432-12440. doi: 10.1021/acs.est.5b03758

    11. [11]

      QU L L, LUO Z J, TANG C. One step synthesis of Bi@Bi2O3@carboxylate-rich carbon spheres with enhanced photocatalytic performance[J]. Mater Res Bull, 2013,48(11):4601-4605. doi: 10.1016/j.materresbull.2013.07.047

    12. [12]

      ZHANG Y F, ZHU G Q, HOJAMBERDIEV M. Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi2O2CO3 nanosheets with exposed {001} facets for the degradation of organic pollutants[J]. Appl Surf Sci, 2016,371:231-241. doi: 10.1016/j.apsusc.2016.02.210

    13. [13]

      LIU Y Y, WANG Z Y, HUANG B B. Preparation, electronic structure, and photocatalytic properties of Bi2O2CO3 nanosheet[J]. Appl Surf Sci, 2010,257(1):172-175. doi: 10.1016/j.apsusc.2010.06.058

    14. [14]

      CEN W L, XIONG T, TANG C Y. Effects of morphology and crystallinity on the photocatalytic activity of (BiO)2CO3 nano/Microstructures[J]. Ind Eng Chem Res, 2014,53(39):15002-15011. doi: 10.1021/ie502670n

    15. [15]

      AI Z H, HO W K, LEE S C. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ Sci Technol, 2009,43(11):4143-4150. doi: 10.1021/es9004366

    16. [16]

      NYHOLM R, BERNDTSSON A, MARTENSSON N. Core level binding energies for the elements Hf to Bi (Z=72-83)[J]. J Phys C: Solid St Phys, 1980,13:L1091-L1096. doi: 10.1088/0022-3719/13/36/009

    17. [17]

      LI Y Y, DANG L Y, HAN L F. Iodine-sensitized Bi4Ti3O12/TiO2 photocatalyst with enhanced photocatalytic activity on degradation of phenol[J]. J Mol Catal A: Chem, 2013,379(15):146-151.

    18. [18]

      ZHOU Y G, ZHANG Y F, LIN M S. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis[J]. Nat Commun, 2015,6:8340-8347. doi: 10.1038/ncomms9340

    19. [19]

      DONG F, LI Q Y, SUN Y J. Noble metal-like behavior of plasmonic Bi particles as a cocatalyst deposited on (BiO)2CO3 microspheres for efficient visible light photocatalysis[J]. ACS Catal, 2014,4:4341-4350. doi: 10.1021/cs501038q

    20. [20]

      MCMAHON J M, SCHATZ G C, GRAY S K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi[J]. Phys Chem Chem Phys, 2013,15:5415-5423. doi: 10.1039/C3CP43856B

    21. [21]

      WANG Z, JIANG C L, HUANG R. Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facilethermolysis method[J]. J Phys Chem C, 2014,118(2):1155-1160. doi: 10.1021/jp4065505

  • 加载中
    1. [1]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    7. [7]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    9. [9]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    18. [18]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(13)
  • Abstract views(2612)
  • HTML views(527)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return