Citation: Hui-Li ZHANG, Hong-Yan CUI, Wen-Long HUANG, Guo-Qiang HU. Synthesis and Antitumor Activity of Rhodanine Methylene-Substituted Levofloxacin Derivatives[J]. Chinese Journal of Applied Chemistry, ;2021, 38(2): 188-194. doi: 10.19894/j.issn.1000-0518.200199 shu

Synthesis and Antitumor Activity of Rhodanine Methylene-Substituted Levofloxacin Derivatives

  • Corresponding author: Hong-Yan CUI, lee7758521_1@163.com Guo-Qiang HU, hgqxy@sina.com.cn
  • Received Date: 28 June 2020
    Accepted Date: 4 September 2020

    Fund Project: the National Natural Science Foundation of China 20872028the National Natural Science Foundation of China 21072045

Figures(2)

  • To explore an efficient structural modification strategy to enhance the antitumor activity of fluoroquinolones, a methane-rhodanine fragment was used as the bioisosteric replacement of the C-3 carboxylic acid group and consequently twelve new C-3 α, β-unsaturated thiazolone derivatives (6a-6l) were designed and synthesized by Claisen-Schmid condensation reaction with oxazinoquinolin-7-one-6-carbaldehyde (5) derived from levofloxacin (1) and N-substituted rhodanines (2a-2l), respectively. The in vitro antitumor activity of the synthesized compounds is more potent than that of levofloxacin along with lower cytotoxicity against Vero cells. Meanwhile, the structure-activity relationship (SAR) reveals that halophenyl, N-unsubstituted or cyclopropyl rhodaninec ompounds display a better activity than those of the control compounds, especially the IC50 values of cyclopropyl rhodanine compound (6j) against A549 cell growth is comparable to doxorubicin. Thus, an unsaturated ketone annulated rhodanine scaffold as a bioisostere of the C-3 carboxylic acid group is found to be an alternative proposal for improving the antitumor activity of fluoroquinolones. Furthermore, whether an α, β-unsaturated ketone fragment is a promising bioisostere of the C-3 carboxylic acid group is worth further developing.
  • 加载中
    1. [1]

      ABDOLMALEKI A, GHASEMI J B. Dual-acting of hybrid compounds-a new dawn in the discovery of multi-target drugs: lead generation approaches[J]. Curr Top Med Chem, 2017,17(9):1096-1114. doi: 10.2174/1568026616666160927151144

    2. [2]

      BATTINI L, BOLLINI M. challenges and approaches in the discovery of human immunodeficiency virus type-1 non-nucleoside reverse transcriptase inhibitors[J]. Med Res Rev, 2019,39(4):1235-1273. doi: 10.1002/med.21544

    3. [3]

      CHO S, KIM S H, SHIN D. Recent applications of hydantoin and thiohydantoin in medicinal chemistry[J]. Eur J Med Chem, 2019,164:517-545. doi: 10.1016/j.ejmech.2018.12.066

    4. [4]

      KAMINSKYY D, KRYSHCHYSHYN A, LESYK R. Recent developments with rhodanine as a scaffold for drug discovery[J]. Expert Opin Drug Discov, 2017,12(12):1233-1252. doi: 10.1080/17460441.2017.1388370

    5. [5]

      ZHUANG C, ZHANG W, SHENG C. Chalcone: a privileged structure in medicinal chemistry[J]. Chem Rev, 2017,117(12):7762-7810. doi: 10.1021/acs.chemrev.7b00020

    6. [6]

      MIGNANI S, EL BRAHMI N, EL KAZZOULI S. A novel class of ethacrynic acid derivatives as promising drug-like potent generation of anticancer agents with established mechanism of action[J]. Eur J Med Chem, 2016,122:656-673. doi: 10.1016/j.ejmech.2016.05.063

    7. [7]

      CORTÉS-BENÍTEZ F, CABEZA M, RAMÍREZ-APAN M T. Synthesis of 17β-N-arylcarbamoylandrost-4-en-3-one derivatives and their anti-proliferative effect on human androgen-sensitive LNCaP cell line[J]. Eur J Med Chem, 2016,121:737-736. doi: 10.1016/j.ejmech.2016.05.059

    8. [8]

      SONG M. Progress in discovery of KIF5B-RET kinase inhibitors for the treatment of non-small-cell lung cancer[J]. J Med Chem, 2015,59(9):3672-3681.  

    9. [9]

      JACKSON P A, WIDEN J C, HARKI D A. Covalent modifiers: a chemical perspective on the reactivity of α, β-unsaturated carbonyls with thiols via hetero-michael addition reactions[J]. J Med Chem, 2017,60(3):839-885. doi: 10.1021/acs.jmedchem.6b00788

    10. [10]

      KAMINSKYY D, KRYSHCHYSHYN A, LESYK R. 5-Ene-4-thiazolidinones-an efficient tool in medicinal chemistry[J]. Eur J Med Chem, 2017,140:542-549. doi: 10.1016/j.ejmech.2017.09.031

    11. [11]

      SKOK Ž, ZIDAR N, KIKELJ D. Dual inhibitors of human DNA topoisomerase II and other cancer-related targets[J]. J Med Chem, 2020,63(3):884-904. doi: 10.1021/acs.jmedchem.9b00726

    12. [12]

      SUAIFAN G A R Y, MOHAMMED A A M. Fluoroquinolones structural and medicinal developments (2013-2018): where are we now?[J]. Bioorg Med Chem, 2019,27(14):3005-3060. doi: 10.1016/j.bmc.2019.05.038

    13. [13]

      YOU Q D, LI Z Y, HUANG C H. Discovery of a novel series of quinolone and naphthyridine derivatives as potential topoisomerase I inhibitors by scaffold modification[J]. J Med Chem, 2009,52(18):5649-5661. doi: 10.1021/jm900469e

    14. [14]

      HU W, HUANG X S, WU J F. Discovery of novel topoisomerase II inhibitors by medicinal chemistry approaches[J]. J Med Chem, 2018,61(20):8947-8980. doi: 10.1021/acs.jmedchem.7b01202

    15. [15]

      LI Y Y, ZHANG C X, HUANG W L. Synthesis and antitumor activities of C-3 thiazolotriazole unsaturated Ketone derivatives of levofloxacoin[J]. Chinese J Appl Chem, 2019,36(6):671-676.  

    16. [16]

      ZHANG H L, LI K, HUANG W L. Synthesis and antitumor activity of N-arylidene-rhodanine levofloxacin amides[J]. Chinese J Appl Chem, 2019,36(8):897-903.  

    17. [17]

      HU G Q, WANG G Q, DUAN N N. Design, synthesis and antitumor activity of fluoroquinolone C3 heterocyclic bis-oxadiazole methylsulfide derivatives derived from levofloxacin[J]. Chem Res Chinese Univ, 2012,28(6):980-984.  

    18. [18]

      BROWN F C, BRADSHER C K, MORGAN E C. Some 3-substituted rhodanines[J]. J Am Chem Soc, 1956,78:384-388. doi: 10.1021/ja01583a037

    19. [19]

      CHEN L H, XIE L, XIE J Z. Total synthesis of an analogue of schizandrin[J]. Acta Pharm Sin, 1991,26(1):20-24.  

    20. [20]

      MA B, BANERJEE B, LITVINOV D N. Total synthesis of the antimitotic bicyclic peptide celogentin C[J]. J Am Chem Soc, 2010,132(3):1159-1171. doi: 10.1021/ja909870g

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    6. [6]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    7. [7]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    8. [8]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    9. [9]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    10. [10]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    11. [11]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    12. [12]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    13. [13]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    14. [14]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    17. [17]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    18. [18]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    19. [19]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    20. [20]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

Metrics
  • PDF Downloads(42)
  • Abstract views(5316)
  • HTML views(611)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return