Synthesis of Proline-Stabilized Cu Nanoclusters for Detection of Picric Acid
- Corresponding author: Shen ZHANG, zhangs@tynu.edu.cn
Citation:
Zhi-Feng CAI, Liang-Liang WU, Kai-Fei QI, Chen-Hua DENG, Shen ZHANG, Cai-Feng ZHANG. Synthesis of Proline-Stabilized Cu Nanoclusters for Detection of Picric Acid[J]. Chinese Journal of Applied Chemistry,
;2021, 38(1): 107-115.
doi:
10.19894/j.issn.1000-0518.200187
XU B W, WU X F, LI H B. Selective detection of TNT and picric acid by conjugated polymer film sensors with donor-acceptor architecture[J]. Macromolecules, 2011,44(13):5089-5092. doi: 10.1021/ma201003f
BHALLA V, GUPTA A, KUMAR M. Self-assembled pentacenequinone derivative for trace detection of picric acid[J]. ACS Appl Mater Interfaces, 2013,5(3):672-679. doi: 10.1021/am302132h
MU R, YUAN Y, KARNJANAPIBOONWONG A. Fast separation and quantification method for nitroguanidine and 2, 4-dinitroanisole by ultrafast liquid chromatography-tandem mass spectrometry[J]. Anal Chem, 2012,84(7):3427-3432. doi: 10.1021/ac300306p
PENG Y, ZHANG A J, DONG M. A Colorimetric and fluorescent chemosensor for the detection of an explosive-2, 4, 6-trinitrophenol (TNP)[J]. Chem Commun, 2011,47(15):4505-4507. doi: 10.1039/c1cc10400d
RISKIN M, TEL-VERED R, BOURENKO T. Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-donor-acceptor interactions[J]. J Am Chem Soc, 2008,130(30):9726-9733. doi: 10.1021/ja711278c
XU Y, LI B, LI W. "ICT-not-quenching" near infrared ratiometric fluorescent detection of picric acid in aqueous media[J]. Chem Commun, 2013,49(42):4764-4766. doi: 10.1039/c3cc41994k
CHENG S, DOU J, WANG W. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives[J]. Anal Chem, 2013,85(1):319-326. doi: 10.1021/ac302836f
SHANKARAN D, GOBI K, MATSUMOTO K. Highly sensitive surface plasmon resonance immunosensor for parts-per-trillion level detection of 2, 4, 6-trinitrophenol[J]. Sens Actuator B, 2004,100(2/3):450-454.
KO H, CHANG S, TSUKRUK V V. Porous substrates for label-free molecular level detection of nonresonant organic molecules[J]. ACS Nano, 2009,3(1):181-188. doi: 10.1021/nn800569f
HUANG H, LI H, FENG J J. One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+ sensing[J]. Sens Actuator B, 2017,241:292-297. doi: 10.1016/j.snb.2016.10.086
OU G Z, ZHAO J, CHEN P. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions[J]. Anal Bioanal Chem, 2018,410(10):2485-2498. doi: 10.1007/s00216-017-0808-6
CAO H Y, CHEN Z H, ZHENG H Z. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging[J]. Biosens Bioelectron, 2014,62(15):189-195.
SUN D H, LIU Z Y, XIAO Z L. Plant-mediated synthesis of silver nanoparticles and applicationin antibacterial fabric[J]. CIESC J, 2015,66(9):3678-3684.
JIANG X D, WANG Z X, JIANG G X. Raman enhancement of biosynthesized Au-Ag bimetallic nanomaterials[J]. CIESC J, 2016,67(11):4906-4911.
WANG C X, CHENG H, HUANG Y J. Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb2+ in living cells[J]. Analyst, 2015,140(16):5634-5639. doi: 10.1039/C5AN00741K
APARNA R S, SYAMCHAND S S, GEORGE S. Tannic acid stabilised copper nanocluster developed through microwave mediated synthesis as a fluorescent probe for the turn on detection of dopamine[J]. J Clust Sci, 2017,28(4):2223-2238. doi: 10.1007/s10876-017-1221-1
YANG K C, WANG Y Y, LU C S. Ovalbumin-directed synthesis of fluorescent copper nanoclusters for sensing both vitamin B1 and doxycycline[J]. J Lumin, 2018,196:181-186. doi: 10.1016/j.jlumin.2017.12.038
GUI R J, SUN J, CAO X L. Multidentate Polymers stabilized water-dispersed copper nanoclusters: facile photoreduction synthesis and selective fluorescence turn-on response[J]. RSC Adv, 2014,4(55):29083-29088. doi: 10.1039/C4RA03606A
TANG T, OUYANG J, HU L S. Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(Ⅲ) in human serum[J]. Microchim Acta, 2016,183(10):2831-2836. doi: 10.1007/s00604-016-1935-z
LIAN J Y, LIU Q, JIN Y. Histone-DNA interaction: an effective approach to improve the fluorescence intensity and stability of DNA-templated Cu nanoclusters[J]. Chem Commun, 2017,53(93):12568-12571. doi: 10.1039/C7CC07424G
BAGHERI H, AFKHAMI A, KHOSHSAFAR H. Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor[J]. Biosens Bioelectron, 2017,89(Pt 2):829-836.
ZHANG Y Y, LI Y X, ZHANG C Y. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets[J]. Anal Bioanal Chem, 2017,409(20):4771-4778. doi: 10.1007/s00216-017-0420-9
AI L, JIANG W R, LIU Z Y. Engineering a red emission of copper nanocluster self-assembly architectures by employing aromatic thiols as capping ligands[J]. Nanoscale, 2017,9(34):12618-12627. doi: 10.1039/C7NR03985A
ZHANG W J, LIU S G, HAN L. Copper nanoclusters with strong fluorescence emission as a sensing platform for sensitive and selective detection of picric acid[J]. Anal Methods, 2018,10(35):4251-4256. doi: 10.1039/C8AY01357H
YANG S H, SUN X H, CHEN Y. A novel fluorescence enhancement probe based on L-cystine modified copper nanoclusters for the detection of 2, 4, 6-trinitrotoluene[J]. Mater Lett, 2017,194:5-8. doi: 10.1016/j.matlet.2017.02.013
LI L, HOU C J, LI J W. Fluazinam direct detection based on the inner filter effect using a copper nanocluster fluorescent probe[J]. Anal Methods, 2019,11(36):4637-4634. doi: 10.1039/C9AY01654F
SHANMUGARAJ K, JOHN S A. Inner filter effect based selective detection of picric acid in aqueous solution using green luminescent copper nanoclusters[J]. New J Chem, 2018,42(9):7223-7229. doi: 10.1039/C8NJ00789F
PATEL R, BOTHRA S, KUMAR R. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips[J]. Biosens Bioelectron, 2018,102:196-203. doi: 10.1016/j.bios.2017.11.031
Yanting HUANG , Hua XIANG , Mei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016