Citation: Zhi-Feng CAI, Liang-Liang WU, Kai-Fei QI, Chen-Hua DENG, Shen ZHANG, Cai-Feng ZHANG. Synthesis of Proline-Stabilized Cu Nanoclusters for Detection of Picric Acid[J]. Chinese Journal of Applied Chemistry, ;2021, 38(1): 107-115. doi: 10.19894/j.issn.1000-0518.200187 shu

Synthesis of Proline-Stabilized Cu Nanoclusters for Detection of Picric Acid

  • Corresponding author: Shen ZHANG, zhangs@tynu.edu.cn
  • Received Date: 17 June 2020
    Accepted Date: 3 September 2020

    Fund Project: Shanxi Provincial Applied Fundamental Research Fund Project 201801D121257he Science and Technology Innovation Project of Shanxi Province 2020L0499the College Students′ Innovation Program of Taiyuan Normal University CXCY2004the Innovation and Entrepreneurship Training Project for College Students in Shanxi Province 2020486

Figures(8)

  • In this work, we reported one-pot chemical reduction method for the synthesis of proline-stabilized copper nanoclusters (Cu NCs), in which proline as the capping agent and hydroxylamine hydrochloride as the reducing agent. The optical properties of Cu NCs was measured by fluorescence spectroscopy and ultraviolet(UV)-visible absorption spectroscopy. The structure of Cu NCs was characterized using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the Cu NCs are highly dispersed and spherical in shape with a size of around 1.89 nm. The Cu NCs exhibit brown and blue fluorescence under sunlight and UV light irradiation, respectively. The Cu NCs solution shows the maximum emission peak at 458 nm under the excitation wavelength of 397 nm. Their fluorescence is selectively and sensitively quenched by picric acid. Under optimized conditions, the assay displays a linear response in the 0.5 to 15 μmol/L and 20 to 70 μmol/L picric acid (PA) concentration range, with a detection limit of 0.092 μmol/L based on an S/N ratio of 3. The possible mechanism is static quenching and the inner filter effect. In addition, the fluorescent probe has been successfully applied to the determination of PA in real water samples.
  • 加载中
    1. [1]

      XU B W, WU X F, LI H B. Selective detection of TNT and picric acid by conjugated polymer film sensors with donor-acceptor architecture[J]. Macromolecules, 2011,44(13):5089-5092. doi: 10.1021/ma201003f

    2. [2]

      BHALLA V, GUPTA A, KUMAR M. Self-assembled pentacenequinone derivative for trace detection of picric acid[J]. ACS Appl Mater Interfaces, 2013,5(3):672-679. doi: 10.1021/am302132h

    3. [3]

      MU R, YUAN Y, KARNJANAPIBOONWONG A. Fast separation and quantification method for nitroguanidine and 2, 4-dinitroanisole by ultrafast liquid chromatography-tandem mass spectrometry[J]. Anal Chem, 2012,84(7):3427-3432. doi: 10.1021/ac300306p

    4. [4]

      PENG Y, ZHANG A J, DONG M. A Colorimetric and fluorescent chemosensor for the detection of an explosive-2, 4, 6-trinitrophenol (TNP)[J]. Chem Commun, 2011,47(15):4505-4507. doi: 10.1039/c1cc10400d

    5. [5]

      RISKIN M, TEL-VERED R, BOURENKO T. Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-donor-acceptor interactions[J]. J Am Chem Soc, 2008,130(30):9726-9733. doi: 10.1021/ja711278c

    6. [6]

      XU Y, LI B, LI W. "ICT-not-quenching" near infrared ratiometric fluorescent detection of picric acid in aqueous media[J]. Chem Commun, 2013,49(42):4764-4766. doi: 10.1039/c3cc41994k

    7. [7]

      CHENG S, DOU J, WANG W. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives[J]. Anal Chem, 2013,85(1):319-326. doi: 10.1021/ac302836f

    8. [8]

      SHANKARAN D, GOBI K, MATSUMOTO K. Highly sensitive surface plasmon resonance immunosensor for parts-per-trillion level detection of 2, 4, 6-trinitrophenol[J]. Sens Actuator B, 2004,100(2/3):450-454.  

    9. [9]

      KO H, CHANG S, TSUKRUK V V. Porous substrates for label-free molecular level detection of nonresonant organic molecules[J]. ACS Nano, 2009,3(1):181-188. doi: 10.1021/nn800569f

    10. [10]

      HUANG H, LI H, FENG J J. One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+ sensing[J]. Sens Actuator B, 2017,241:292-297. doi: 10.1016/j.snb.2016.10.086

    11. [11]

      OU G Z, ZHAO J, CHEN P. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions[J]. Anal Bioanal Chem, 2018,410(10):2485-2498. doi: 10.1007/s00216-017-0808-6

    12. [12]

      CAO H Y, CHEN Z H, ZHENG H Z. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging[J]. Biosens Bioelectron, 2014,62(15):189-195.  

    13. [13]

      SUN D H, LIU Z Y, XIAO Z L. Plant-mediated synthesis of silver nanoparticles and applicationin antibacterial fabric[J]. CIESC J, 2015,66(9):3678-3684.

    14. [14]

      JIANG X D, WANG Z X, JIANG G X. Raman enhancement of biosynthesized Au-Ag bimetallic nanomaterials[J]. CIESC J, 2016,67(11):4906-4911.

    15. [15]

      WANG C X, CHENG H, HUANG Y J. Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb2+ in living cells[J]. Analyst, 2015,140(16):5634-5639. doi: 10.1039/C5AN00741K

    16. [16]

      APARNA R S, SYAMCHAND S S, GEORGE S. Tannic acid stabilised copper nanocluster developed through microwave mediated synthesis as a fluorescent probe for the turn on detection of dopamine[J]. J Clust Sci, 2017,28(4):2223-2238. doi: 10.1007/s10876-017-1221-1

    17. [17]

      YANG K C, WANG Y Y, LU C S. Ovalbumin-directed synthesis of fluorescent copper nanoclusters for sensing both vitamin B1 and doxycycline[J]. J Lumin, 2018,196:181-186. doi: 10.1016/j.jlumin.2017.12.038

    18. [18]

      GUI R J, SUN J, CAO X L. Multidentate Polymers stabilized water-dispersed copper nanoclusters: facile photoreduction synthesis and selective fluorescence turn-on response[J]. RSC Adv, 2014,4(55):29083-29088. doi: 10.1039/C4RA03606A

    19. [19]

      TANG T, OUYANG J, HU L S. Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(Ⅲ) in human serum[J]. Microchim Acta, 2016,183(10):2831-2836. doi: 10.1007/s00604-016-1935-z

    20. [20]

      LIAN J Y, LIU Q, JIN Y. Histone-DNA interaction: an effective approach to improve the fluorescence intensity and stability of DNA-templated Cu nanoclusters[J]. Chem Commun, 2017,53(93):12568-12571. doi: 10.1039/C7CC07424G

    21. [21]

      BAGHERI H, AFKHAMI A, KHOSHSAFAR H. Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor[J]. Biosens Bioelectron, 2017,89(Pt 2):829-836.  

    22. [22]

      ZHANG Y Y, LI Y X, ZHANG C Y. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets[J]. Anal Bioanal Chem, 2017,409(20):4771-4778. doi: 10.1007/s00216-017-0420-9

    23. [23]

      AI L, JIANG W R, LIU Z Y. Engineering a red emission of copper nanocluster self-assembly architectures by employing aromatic thiols as capping ligands[J]. Nanoscale, 2017,9(34):12618-12627. doi: 10.1039/C7NR03985A

    24. [24]

      ZHANG W J, LIU S G, HAN L. Copper nanoclusters with strong fluorescence emission as a sensing platform for sensitive and selective detection of picric acid[J]. Anal Methods, 2018,10(35):4251-4256. doi: 10.1039/C8AY01357H

    25. [25]

      YANG S H, SUN X H, CHEN Y. A novel fluorescence enhancement probe based on L-cystine modified copper nanoclusters for the detection of 2, 4, 6-trinitrotoluene[J]. Mater Lett, 2017,194:5-8. doi: 10.1016/j.matlet.2017.02.013

    26. [26]

      LI L, HOU C J, LI J W. Fluazinam direct detection based on the inner filter effect using a copper nanocluster fluorescent probe[J]. Anal Methods, 2019,11(36):4637-4634. doi: 10.1039/C9AY01654F

    27. [27]

      SHANMUGARAJ K, JOHN S A. Inner filter effect based selective detection of picric acid in aqueous solution using green luminescent copper nanoclusters[J]. New J Chem, 2018,42(9):7223-7229. doi: 10.1039/C8NJ00789F

    28. [28]

      PATEL R, BOTHRA S, KUMAR R. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips[J]. Biosens Bioelectron, 2018,102:196-203. doi: 10.1016/j.bios.2017.11.031

  • 加载中
    1. [1]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    7. [7]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    8. [8]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    9. [9]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    10. [10]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(8)
  • Abstract views(2334)
  • HTML views(366)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return