Citation: Si-Jia LU, Zhuo XING, Rui-Qin YANG. Detection of Metal Imprints on Non-porous Surfaces[J]. Chinese Journal of Applied Chemistry, ;2021, 38(1): 116-122. doi: 10.19894/j.issn.1000-0518.200155 shu

Detection of Metal Imprints on Non-porous Surfaces

  • Corresponding author: Rui-Qin YANG, yangruiqin@ppsuc.edu.cn
  • Received Date: 22 May 2020
    Accepted Date: 21 July 2020

    Fund Project: the Innovation Personnel Training Project of People′s Public Security University of China in 2020 2020ssky006the Fund of Liu Yao Academician of Chinese Academy of Engineering 2019-YZ-01

Figures(9)

  • A new method of visualizing metal imprints on non-porous surfaces was studied using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol as the chromogenic reagent. The affecting factors such as contact time, time elapse from the contact to the reaction, type of substrates and transfer times were studied. The results show that imprints with good quality are obtained when the contact time is more than 1 s, the time interval is between 1~30 days and the metal imprints within 5 deposition times after the contact between hands and metal tools for 90 s. This method has the advantages of high sensitivity and easy operation and is used to establish the connection between suspects and metal tools, which has potential applications in forensic science.
  • 加载中
    1. [1]

      XING Z, YANG R Q. Chromogenic detection of imprints left by zinc coatings on human skins by 2-(5-bromo-2-pyridylazo)-5-(diethylamino) phenol[J]. Chinese J Appl Chem, 2015,32(9):1093-1098.  

    2. [2]

      United States of America. Trace Metal Detection Techniques in Law Enforcement[M]. Bureau of Justice Statistics, 1970.

    3. [3]

      STEVENS J M, MESSLER H. The trace metal detection technique(TMDT): a report outlining a procedure for photographing results in color, and some factors influencing the results in controlled laboratory tests[J]. J Forensic Sci, 1974,19(3):496-503.  

    4. [4]

      GOLDMAN G L, THORNTON J I. A new trace ferrous metal detection reagent[J]. J Forensic Sci, 1976,21(3):625-628.  

    5. [5]

      LEE C W, PHIL M. The detection of iron traces on hands by ferrozine sprays: a report on the sensitivity and interference of the method and recommended procedure in forensic science investigation[J]. J Forensic Sci, 1986,31(3):920-930.  

    6. [6]

      ALMOG J, HIRSHFELD A, GLATTSTEIN B. Chromogenic reagents for iron(Ⅱ): studies in the 1, 2, 4-triazine series[J]. Anal Chim Acta, 1996,322(3):203-208. doi: 10.1016/0003-2670(95)00605-2

    7. [7]

      AVISSAR Y Y, SAGIV A E, DANIEL M. Identification of firearms handling by the[Fe(PDT)3]2+ complex: chemical and time-dependent factors[J]. Talanta, 2005,67(2):328-333. doi: 10.1016/j.talanta.2005.01.032

    8. [8]

      ALMOG J, BAR-OR K L, LEIFER A. Detection of recent holding of firearms: improving the sensitivity of the PDT test[J]. Forensic Sci Int, 2014(241):55-59.  

    9. [9]

      OLEJNICZAK A, CYGANIUK A W, LUKASZEWICZ J P. 1, 2, 4-Triazine-based chromogenic reagents for the detection of microtraces of various metals left on human skin[J]. J Forensic Sci, 2010,55(3):747-752. doi: 10.1111/j.1556-4029.2010.01350.x

    10. [10]

      XING Z, YANG R Q. Improvement techniques of the imprint left by metal tools on human skins with 5-Br-PADAP reagents[J]. Chem Reag, 2015,37(11):1009-1014.  

    11. [11]

      YANG R Q, XING Z, ZHOU H. Spectrophotometric determination of the amount of zinc on the imprint left on hands by zinc coatings with 5-Br-PADAP as the chromogenic reagent[J]. Spectrosc Spectr Anal, 2016,36(12):4017-4020.  

    12. [12]

      BLEAY S M, GROVE L E, KELLY P F. Non-invasive detection and chemical mapping of trace metal residues on the skin[J]. RSC Adv, 2014,4(37)19525. doi: 10.1039/c4ra02463j

    13. [13]

      XING Z, YANG R Q, LIU W. A modified trace metal detection test for secondary imprints on porous substrates: a preliminary study[J]. Forensic Sci Int, 2019(260):28-38.  

    14. [14]

      XING Z, YANG D S, ZHOU H. Intergrated detection of latent fingerprints and imprints left by metallic tools on porous substrates[J]. Chem Reag, 2019,41(3):288-293.  

    15. [15]

      XING Z, LU S J, WANG A H, et al. A subsequent procedure for further deciphering weapons after application of the trace metal detection test (TMDT): proof of concept[J/OL]. Forensic Sci Int, 2020(310): 110253. http://dx.doi.org/10.1016/j.forsciint.2020.110253/pdf. [published online ahead of print].

    16. [16]

      WEI F S, ZHU Y R, SHEN N K. High sensitive chromogenie reagent 5-Br-PADAP[J]. Chem Reag, 1980(1):54-57.  

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    3. [3]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    11. [11]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    12. [12]

      Wanping Chen . Preliminary Exploration of the Chemistry Curriculum Content Selection for Science Education Major. University Chemistry, 2025, 40(3): 251-258. doi: 10.12461/PKU.DXHX202405065

    13. [13]

      CCS Chemistry | 国家自然科学基金委员会高飞雪&杨俊林:国家自然科学基金化学基础研究的资助策略、趋势与前沿. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405124): -.

    14. [14]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    15. [15]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    16. [16]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    17. [17]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    18. [18]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

Metrics
  • PDF Downloads(5)
  • Abstract views(2841)
  • HTML views(495)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return