Research Progress of Metal Sulfides in Rechargeable Batteries
- Corresponding author: GAO Tian, gaotian@shiep.edu.cn TANG Mingxue, mingxue.tang@hpstar.ac.cn
Citation:
HUI Kanglong, FU Jipeng, GAO Tian, TANG Mingxue. Research Progress of Metal Sulfides in Rechargeable Batteries[J]. Chinese Journal of Applied Chemistry,
;2020, 37(12): 1384-1402.
doi:
10.11944/j.issn.1000-0518.2020.12.200190
Zheng X, Li J. A Review of Research on Hematite as Anode Material for Lithium-Ion Batteries[J]. Ionics, 2014,20(12):1651-1663.
HE Donghua, TANG Anping, SHEN Jie. Progress in Lithium Vanadyl Phosphate as Electrode Materials for Lithium-Ion Batteries[J]. Chinese J Appl Chem, 2014,31(10):1115-1122.
Tian L, Zou H L, Fu J X. Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance[J]. Adv Funct Mater, 2010,20:617-623.
Xu X, Ji S, Gu M. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries[J]. ACS Appl Mater Interfaces, 2015,7(37)20957.
ZUO Zicheng, LI Liangyu. Applications of Graphdiyne in Li+/Na+ Battery Anodes[J]. Chinese J Appl Chem, 2018,35(9):1057-1066.
Xiao Y, Lee S H, Sun Y K. The Application of Metal Sulfides in Sodium-Ion Batteries[J]. Adv Energy Mater, 2017,7:1601329-1601349.
LI Zongfeng, DONG Guixia, KANG Jingrui. Research Progress of Transition Metal Sulfides in Lithium-Ion Batteries[J]. Chinese J Power Sources, 2019,43(6):1042-1046.
MA Yanmei. Research Progress of Sulphide Anode Materials for Sodium-Ion Batteries[J]. Energy Storage Sci Technol, 2019,8(3):52-58.
WEI Keyi, LI Xue. Research Status of Metal Sulfides in Lithium-Ion Batteries[J]. Electron Mass, 2020(3):4-7.
Luo B, Fang Y, Wang B. Two Dimensional Graphene-SnS2 Hybrids with Superior Rate Capability for Lithium-Ion Storage[J]. Energy Environ Sci, 2012,5(1):5226-5230.
Yang S, Zhang Y, Wang S. Rational Construction of MoS2/Mo2N/C Hierarchical Porous Tubular Nanostructures for Enhanced Lithium Storage[J]. J Mater Chem A, 2019,7:23886-23894.
Hu X, Li Y, Zeng G. Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS2 for Lithium and Sodium Storage[J]. ACS Nano, 2018,12(2):1592-1602.
Lim Y V, Wang Y, Guo L. Cubic-shaped WS2 Nanopetals on Prussian Blue Derived Nitrogen-Doped Carbon Nanoporous Framework for High Performance Sodium-ion Batteries[J]. J Mater Chem A, 2017,5:10406-10415.
Zhang X, Zhao R F, Wu Q H. Ultrathin WS2 Nanosheets Vertically Embedded in Hollow Mesoporous Carbon Framework-A Triple-Shelled Structure with Enhanced Lithium Storage and Electrocatalytic Properties[J]. J Mater Chem A, 2018,6:19004-19012.
Yu X Y, Yu L, Lou X W. Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage[J]. Adv Energy Mater, 2016,6(3)1501333.
Wang J G, Sun H H, Liu H Y. Edge-Oriented SnS2 Nanosheet Arrays on Carbon Paper as Advanced Binder-Free Anodes for Li-Ion and Na-Ion Batteries[J]. J Mater Chem A, 2017,5:23115-23122.
Chen M, Zhang Z, Si L. Engineering of Yolk-Double Shell Cube-like SnS@N-S Codoped Carbon as a High-Performance Anode for Li- and Na-Ion Batteries[J]. ACS Appl Mater Interfaces, 2019,11(38):35050-35059.
Wang L, Li X, Jin Z. Spatially Controlled Synthesis of Superlattice-like SnS/Nitrogen-Doped Graphene Hybrid Nanobelts as High-Rate and Durable Anode Materials for Sodium-Ion Batteries[J]. J Mater Chem A, 2019,7:27475-27483.
Zhang Q, Bock D C, Takeuchi K J. Probing Titanium Disulfide-Sulfur Composite Materials for Li-S Batteries via In Situ X-Ray Diffraction (XRD)[J]. J Electrochem Soc, 2017,4(164):A897-A901.
Chaturvedi A, Edison E, Arun N. Two Dimensional TiS2 as a Promising Insertion Anode for Na-Ion Battery[J]. Chem Select, 2018,3(2):524-528.
Vega-Mayoral V, Tian R, Kelly A. Solvent-Exfoliation Stabilizes TiS2 Nanosheets Against Oxidation, Facilitating Lithium Storage Applications[J]. Nanoscale, 2019,11:6206-6216.
Tao H W, Zhou M, Wang R X. TiS2 as an Advanced Conversion Electrode for Sodium-Ion Batteries with Ultra-high Capacity and Long-Cycle Life[J]. Adv Sci, 2018,111801021.
Lu J, Lian F, Guan L. Adapting FeS2 Micron Particles as an Electrode Material for Lithium-Ion Batteries via Simultaneous Construction of CNT Internal Networks and External Cages[J]. J Mater Chem A, 2019,7:991-997.
Xie X, Hu Y, Fang G. Towards a Durable High Performance Anode Material for Lithium Storage:Stabilizing N-Doped Carbon Encapsulated FeS Nanosheets with Amorphous TiO2[J]. J Mater Chem A, 2019,7:16541-16552.
Xiao F P, Yang X M, Yu Y W. Metal-Organic Framework Derived CoS2 Wrapped with Nitrogen-Doped Carbon for Enhanced Lithium/Sodium Storage Performance[J]. ACS Appl Mater Interfaces, 2020,3(6):217-226.
Pan Y L, Cheng X D, Gong L L. Double-morphology CoS2 Anchored on N-Doped Multichannel Carbon Nanofibers as High-Performance Anode Materials for Na-Ion Batteries[J]. ACS Appl Mater Interfaces, 2018,10(37):31441-31451.
Yang Z G, Wu Z G, Liu J. Platelet-Like CuS Pregnated with Twin Crystal for High Performance Sodium-Ion Storage[J]. J Mater Chem A, 2020,8:8049-8057.
Wang Y, Zhang Y, Li H. Realizing High Reversible Capacity:3D Intertwined CNTs Inherently Conductive Network for CuS as an Anode for Lithium-Ion Batteries[J]. Chem Eng J, 2017,1(332):49-56.
Kang W P, Wang Y Y, Xu J. Recent Progress in Layered Metal Dichalcogenide Nanostructures as Electrodes for High-Performance Sodium-Ion batteries[J]. J Mater Chem A, 2017,5:7667-7690.
Hao J, Zhang J, Xia G L. Heterostructure Manipulation via in Situ Localized Phase Transformation for High-Rate and Highly Durable Lithium Ion Storage[J]. ACS Nano, 2018,12(10):10430-10438.
Han L, Wu S, Hu Z. Hierarchically Porous MoS2-Carbon Hollow Rhomboids for Superior Performance of the Anode of Sodium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2020,12(9):10402-10409.
Zeng X, Ding Z, Ma C. Hierarchical Nanocomposite of Hollow N-Doped Carbon Spheres Decorated with Ultrathin WS2 Nanosheets for High-Performance Lithium-Ion Battery Anode[J]. ACS Appl Mater Interfaces, 2016,8(29):18841-18848.
Li T, Guo R, Luo Y. Improved Lithium and Sodium Ion Storage Properties of WS2 Anode with Three-layer Shell Structure[J]. Electrochim Acta, 2020,1(331)135424.
Hu Z, Zhu Z, Cheng F. Pyrite FeS2 for High-rate and Long-life Rechargeable Sodium Batteries[J]. Energy Environ Sci, 2015,8(4):1309-1316.
Man Z, Li P, Zhou D. Two Birds with One Stone:FeS2@C Yolk-Shell Composite for High-Performance Sodium-Ion Energy Storage and Electromagnetic Wave Absorption[J]. Nano Lett, 2020,5(20):3769-3777.
Bi R, Zeng C, Huang H. Metal-Organic Frameworks Derived Hollow NiS2 Spheres Encased in Graphene Layers for Enhanced Sodium-Ion Storage[J]. J Mater Chem A, 2018,6:14077-14082.
Kim H, Cho G B, Kim K W. Fabrication of Superelastic NiS/TiNi Electrode/Current Collector Materials[J]. Phys Scr, 2007(T129)85.
Nam T H, Ahn H J, Kim K W, et al. Hybrid Superelastic Metal-Metal Sulfide Materials for Current Collector and Anode of Battery: US, 20080066832.X[P]. 2005-12-29.
Xie H Q, Chen M, Wu L M. Hierarchical Nanostructured NiS/MoS2/C Composite Hollow Spheres for High Performance Sodium-Ion Storage Performance[J]. ACS Appl Mater Interfaces, 2019,11:41222-41228.
Li B, Wang R, Chen Z. Embedding Heterostructured MnS/Co1-xS Nanoparticles in Porous Carbon/Graphene for Superior Lithium Storage[J]. J Mater Chem A, 2019,7:1260-1266.
Hou B T, Wang X L, Wang J X. In situ Synthesis of Homogeneous Ce2S3/MoS2 Composites and Their Electrochemical Performance for Lithium Ion Batteries[J]. RSC Adv, 2017,7:6309-6314.
Zhang Y, Lu F, Pan L. Improved Cycling Stability of NiS2 Cathode Through Designing "Kiwano" Hollow Structure[J]. J Mater Chem A, 2018,6:11978-11984.
Li Q, Li L, Wu P. Silica Restricting the Sulfur Volatilization of Nickel Sulfide for High-Performance Lithium-Ion Batteries[J]. Adv Energy Mater, 2019,201901153.
Kim H H, K Sadan M, Kim C. Simple and Scalable Synthesis of CuS as an Ultrafast and Long-Cycling Anode for Sodium-Ion Batteries[J]. J Mater Chem A, 2019,7:16239-16248.
SHI Yongchao, TANG Mingxue. NMR/EPR on Rechargeable Batteries[J]. Acta Phys-Chim Sin, 2020,36(4)1905004.
Chien P H, Feng X, Tang M. Li Distribution Heterogeneity in Solid Electrolyte Li10GeP2S12 upon Electrochemical Cycling Probed by 7Li MRI[J]. J Phys Chem Lett, 2018,9:1990-1998.
Tang M, Sarou-Kanian V, Melin P. Following Lithiation Fronts in Paramagnetic Electrodes with in situ Magnetic Resonance Spectroscopic Imaging[J]. Nat Commun, 2016,713284.
Tang M, Dalzini A, Li X. Operando EPR for Simultaneous Monitoring of Anionic and Cationic Redox Processes in Li-Rich Metal Oxide Cathodes[J]. J Phys Chem Lett, 2017,8(17):4009-4016.
Zheng H, Wang L, Li K. Pressure Induced Polymerization of Acetylide Anions in CaC2 and 107 Fold Enhancement of Electrical Conductivity[J]. Chem Sci, 2016,8:298-304.
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189