Citation: HUI Kanglong, FU Jipeng, GAO Tian, TANG Mingxue. Research Progress of Metal Sulfides in Rechargeable Batteries[J]. Chinese Journal of Applied Chemistry, ;2020, 37(12): 1384-1402. doi: 10.11944/j.issn.1000-0518.2020.12.200190 shu

Research Progress of Metal Sulfides in Rechargeable Batteries

  • Corresponding author: GAO Tian, gaotian@shiep.edu.cn TANG Mingxue, mingxue.tang@hpstar.ac.cn
  • Received Date: 17 June 2020
    Revised Date: 6 July 2020
    Accepted Date: 18 August 2020

    Fund Project: the National Natural Science Foundation of China 2197040727Supported by the National Natural Science Foundation of China (No.2197040727)

Figures(17)

  • Lithium/sodium ion batteries with low cost, long life, high safety, high performance and easy massive fabrication have become very effective secondary energy storage devices. For lithium/sodium batteries, the electrode materials have crucial influence on their performance and cycling life. Metal sulfides are regarded as potential anode materials for lithium/sodium ion batteries because of their high specific capacity and low potential. Metal sulfides show drawbacks, such as shuttle effect and volume change, resulting in structural deformation, together with decayed capacity and reduced stability. This review summarizes the research progress on the modification and properties of metal sulphide anode materials. Designing controlled complex structure and composite anodes enhances electronic conductivity and minimizes the effect caused by volume change, and thereby further to achieve better electrochemical performance. The structure-function relationship of metal sulphide materials is discussed and their positive prospects are proposed.
  • 加载中
    1. [1]

      Zheng X, Li J. A Review of Research on Hematite as Anode Material for Lithium-Ion Batteries[J]. Ionics, 2014,20(12):1651-1663.

    2. [2]

      HE Donghua, TANG Anping, SHEN Jie. Progress in Lithium Vanadyl Phosphate as Electrode Materials for Lithium-Ion Batteries[J]. Chinese J Appl Chem, 2014,31(10):1115-1122.  

    3. [3]

      Tian L, Zou H L, Fu J X. Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance[J]. Adv Funct Mater, 2010,20:617-623.

    4. [4]

      Xu X, Ji S, Gu M. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries[J]. ACS Appl Mater Interfaces, 2015,7(37)20957.

    5. [5]

      ZUO Zicheng, LI Liangyu. Applications of Graphdiyne in Li+/Na+ Battery Anodes[J]. Chinese J Appl Chem, 2018,35(9):1057-1066.  

    6. [6]

      Xiao Y, Lee S H, Sun Y K. The Application of Metal Sulfides in Sodium-Ion Batteries[J]. Adv Energy Mater, 2017,7:1601329-1601349.

    7. [7]

      LI Zongfeng, DONG Guixia, KANG Jingrui. Research Progress of Transition Metal Sulfides in Lithium-Ion Batteries[J]. Chinese J Power Sources, 2019,43(6):1042-1046.

    8. [8]

      MA Yanmei. Research Progress of Sulphide Anode Materials for Sodium-Ion Batteries[J]. Energy Storage Sci Technol, 2019,8(3):52-58.

    9. [9]

      WEI Keyi, LI Xue. Research Status of Metal Sulfides in Lithium-Ion Batteries[J]. Electron Mass, 2020(3):4-7.

    10. [10]

      Luo B, Fang Y, Wang B. Two Dimensional Graphene-SnS2 Hybrids with Superior Rate Capability for Lithium-Ion Storage[J]. Energy Environ Sci, 2012,5(1):5226-5230.

    11. [11]

      Yang S, Zhang Y, Wang S. Rational Construction of MoS2/Mo2N/C Hierarchical Porous Tubular Nanostructures for Enhanced Lithium Storage[J]. J Mater Chem A, 2019,7:23886-23894.

    12. [12]

      Hu X, Li Y, Zeng G. Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS2 for Lithium and Sodium Storage[J]. ACS Nano, 2018,12(2):1592-1602.

    13. [13]

      Lim Y V, Wang Y, Guo L. Cubic-shaped WS2 Nanopetals on Prussian Blue Derived Nitrogen-Doped Carbon Nanoporous Framework for High Performance Sodium-ion Batteries[J]. J Mater Chem A, 2017,5:10406-10415.

    14. [14]

      Zhang X, Zhao R F, Wu Q H. Ultrathin WS2 Nanosheets Vertically Embedded in Hollow Mesoporous Carbon Framework-A Triple-Shelled Structure with Enhanced Lithium Storage and Electrocatalytic Properties[J]. J Mater Chem A, 2018,6:19004-19012.

    15. [15]

      Yu X Y, Yu L, Lou X W. Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage[J]. Adv Energy Mater, 2016,6(3)1501333.

    16. [16]

      Wang J G, Sun H H, Liu H Y. Edge-Oriented SnS2 Nanosheet Arrays on Carbon Paper as Advanced Binder-Free Anodes for Li-Ion and Na-Ion Batteries[J]. J Mater Chem A, 2017,5:23115-23122.

    17. [17]

      Chen M, Zhang Z, Si L. Engineering of Yolk-Double Shell Cube-like SnS@N-S Codoped Carbon as a High-Performance Anode for Li- and Na-Ion Batteries[J]. ACS Appl Mater Interfaces, 2019,11(38):35050-35059.

    18. [18]

      Wang L, Li X, Jin Z. Spatially Controlled Synthesis of Superlattice-like SnS/Nitrogen-Doped Graphene Hybrid Nanobelts as High-Rate and Durable Anode Materials for Sodium-Ion Batteries[J]. J Mater Chem A, 2019,7:27475-27483.

    19. [19]

      Zhang Q, Bock D C, Takeuchi K J. Probing Titanium Disulfide-Sulfur Composite Materials for Li-S Batteries via In Situ X-Ray Diffraction (XRD)[J]. J Electrochem Soc, 2017,4(164):A897-A901.

    20. [20]

      Chaturvedi A, Edison E, Arun N. Two Dimensional TiS2 as a Promising Insertion Anode for Na-Ion Battery[J]. Chem Select, 2018,3(2):524-528.

    21. [21]

      Vega-Mayoral V, Tian R, Kelly A. Solvent-Exfoliation Stabilizes TiS2 Nanosheets Against Oxidation, Facilitating Lithium Storage Applications[J]. Nanoscale, 2019,11:6206-6216.

    22. [22]

      Tao H W, Zhou M, Wang R X. TiS2 as an Advanced Conversion Electrode for Sodium-Ion Batteries with Ultra-high Capacity and Long-Cycle Life[J]. Adv Sci, 2018,111801021.

    23. [23]

      Lu J, Lian F, Guan L. Adapting FeS2 Micron Particles as an Electrode Material for Lithium-Ion Batteries via Simultaneous Construction of CNT Internal Networks and External Cages[J]. J Mater Chem A, 2019,7:991-997.

    24. [24]

      Xie X, Hu Y, Fang G. Towards a Durable High Performance Anode Material for Lithium Storage:Stabilizing N-Doped Carbon Encapsulated FeS Nanosheets with Amorphous TiO2[J]. J Mater Chem A, 2019,7:16541-16552.

    25. [25]

      Xiao F P, Yang X M, Yu Y W. Metal-Organic Framework Derived CoS2 Wrapped with Nitrogen-Doped Carbon for Enhanced Lithium/Sodium Storage Performance[J]. ACS Appl Mater Interfaces, 2020,3(6):217-226.

    26. [26]

      Pan Y L, Cheng X D, Gong L L. Double-morphology CoS2 Anchored on N-Doped Multichannel Carbon Nanofibers as High-Performance Anode Materials for Na-Ion Batteries[J]. ACS Appl Mater Interfaces, 2018,10(37):31441-31451.

    27. [27]

      Yang Z G, Wu Z G, Liu J. Platelet-Like CuS Pregnated with Twin Crystal for High Performance Sodium-Ion Storage[J]. J Mater Chem A, 2020,8:8049-8057.

    28. [28]

      Wang Y, Zhang Y, Li H. Realizing High Reversible Capacity:3D Intertwined CNTs Inherently Conductive Network for CuS as an Anode for Lithium-Ion Batteries[J]. Chem Eng J, 2017,1(332):49-56.

    29. [29]

      Kang W P, Wang Y Y, Xu J. Recent Progress in Layered Metal Dichalcogenide Nanostructures as Electrodes for High-Performance Sodium-Ion batteries[J]. J Mater Chem A, 2017,5:7667-7690.

    30. [30]

      Hao J, Zhang J, Xia G L. Heterostructure Manipulation via in Situ Localized Phase Transformation for High-Rate and Highly Durable Lithium Ion Storage[J]. ACS Nano, 2018,12(10):10430-10438.

    31. [31]

      Han L, Wu S, Hu Z. Hierarchically Porous MoS2-Carbon Hollow Rhomboids for Superior Performance of the Anode of Sodium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2020,12(9):10402-10409.

    32. [32]

      Zeng X, Ding Z, Ma C. Hierarchical Nanocomposite of Hollow N-Doped Carbon Spheres Decorated with Ultrathin WS2 Nanosheets for High-Performance Lithium-Ion Battery Anode[J]. ACS Appl Mater Interfaces, 2016,8(29):18841-18848.

    33. [33]

      Li T, Guo R, Luo Y. Improved Lithium and Sodium Ion Storage Properties of WS2 Anode with Three-layer Shell Structure[J]. Electrochim Acta, 2020,1(331)135424.

    34. [34]

      Hu Z, Zhu Z, Cheng F. Pyrite FeS2 for High-rate and Long-life Rechargeable Sodium Batteries[J]. Energy Environ Sci, 2015,8(4):1309-1316.

    35. [35]

      Man Z, Li P, Zhou D. Two Birds with One Stone:FeS2@C Yolk-Shell Composite for High-Performance Sodium-Ion Energy Storage and Electromagnetic Wave Absorption[J]. Nano Lett, 2020,5(20):3769-3777.

    36. [36]

      Bi R, Zeng C, Huang H. Metal-Organic Frameworks Derived Hollow NiS2 Spheres Encased in Graphene Layers for Enhanced Sodium-Ion Storage[J]. J Mater Chem A, 2018,6:14077-14082.

    37. [37]

      Kim H, Cho G B, Kim K W. Fabrication of Superelastic NiS/TiNi Electrode/Current Collector Materials[J]. Phys Scr, 2007(T129)85.

    38. [38]

      Nam T H, Ahn H J, Kim K W, et al. Hybrid Superelastic Metal-Metal Sulfide Materials for Current Collector and Anode of Battery: US, 20080066832.X[P]. 2005-12-29.

    39. [39]

      Xie H Q, Chen M, Wu L M. Hierarchical Nanostructured NiS/MoS2/C Composite Hollow Spheres for High Performance Sodium-Ion Storage Performance[J]. ACS Appl Mater Interfaces, 2019,11:41222-41228.

    40. [40]

      Li B, Wang R, Chen Z. Embedding Heterostructured MnS/Co1-xS Nanoparticles in Porous Carbon/Graphene for Superior Lithium Storage[J]. J Mater Chem A, 2019,7:1260-1266.

    41. [41]

      Hou B T, Wang X L, Wang J X. In situ Synthesis of Homogeneous Ce2S3/MoS2 Composites and Their Electrochemical Performance for Lithium Ion Batteries[J]. RSC Adv, 2017,7:6309-6314.

    42. [42]

      Zhang Y, Lu F, Pan L. Improved Cycling Stability of NiS2 Cathode Through Designing "Kiwano" Hollow Structure[J]. J Mater Chem A, 2018,6:11978-11984.

    43. [43]

      Li Q, Li L, Wu P. Silica Restricting the Sulfur Volatilization of Nickel Sulfide for High-Performance Lithium-Ion Batteries[J]. Adv Energy Mater, 2019,201901153.

    44. [44]

      Kim H H, K Sadan M, Kim C. Simple and Scalable Synthesis of CuS as an Ultrafast and Long-Cycling Anode for Sodium-Ion Batteries[J]. J Mater Chem A, 2019,7:16239-16248.

    45. [45]

      SHI Yongchao, TANG Mingxue. NMR/EPR on Rechargeable Batteries[J]. Acta Phys-Chim Sin, 2020,36(4)1905004.

    46. [46]

      Chien P H, Feng X, Tang M. Li Distribution Heterogeneity in Solid Electrolyte Li10GeP2S12 upon Electrochemical Cycling Probed by 7Li MRI[J]. J Phys Chem Lett, 2018,9:1990-1998.

    47. [47]

      Tang M, Sarou-Kanian V, Melin P. Following Lithiation Fronts in Paramagnetic Electrodes with in situ Magnetic Resonance Spectroscopic Imaging[J]. Nat Commun, 2016,713284.

    48. [48]

      Tang M, Dalzini A, Li X. Operando EPR for Simultaneous Monitoring of Anionic and Cationic Redox Processes in Li-Rich Metal Oxide Cathodes[J]. J Phys Chem Lett, 2017,8(17):4009-4016.

    49. [49]

      Zheng H, Wang L, Li K. Pressure Induced Polymerization of Acetylide Anions in CaC2 and 107 Fold Enhancement of Electrical Conductivity[J]. Chem Sci, 2016,8:298-304.

  • 加载中
    1. [1]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    4. [4]

      Wenhui LiYakun TangYusheng ZhouYue ZhangWenhai ZhangQingtao MaLang LiuSen DongYuliang Cao . Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(10): 100119-0. doi: 10.1016/j.actphy.2025.100119

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    7. [7]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    9. [9]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    13. [13]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    14. [14]

      Wen Tang Luyu Sui Qian Chen Jun Shao Xinwen Peng Jianwen Jiang Shuiliang Chen . Project-based Teaching of “the Condensed State of Polymers”: Unveiling the Lithium-Ion Battery Separator. University Chemistry, 2025, 40(11): 115-126. doi: 10.12461/PKU.DXHX202412108

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    17. [17]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 100022-0. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    20. [20]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-0. doi: 10.3866/PKU.WHXB202408007

Metrics
  • PDF Downloads(115)
  • Abstract views(5792)
  • HTML views(2256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return