Citation: ZHANG Liang, HE Xinhai, REN Yanwei, CHEN Tongshan, CHEN Dongzhen. Electrospinning Composite Nanofibers for the Application of Flexible Substrate of Surface-Enhanced Raman Scattering Sensing[J]. Chinese Journal of Applied Chemistry, ;2020, 37(12): 1364-1373. doi: 10.11944/j.issn.1000-0518.2020.12.200180 shu

Electrospinning Composite Nanofibers for the Application of Flexible Substrate of Surface-Enhanced Raman Scattering Sensing

  • Corresponding author: HE Xinhai, hexinhai@xpu.edu.cn CHEN Dongzhen, Chendz365@xpu.edu.cn
  • Received Date: 13 June 2020
    Revised Date: 8 July 2020
    Accepted Date: 6 August 2020

    Fund Project: Supported by Xi′an Polytechnic University Keqiao Textile Industry Innovation Research Institute Collaborative Innovation Project(No.19KQZD01), Xi′an Science and Technology Project(No.GXYD7.3) and Key R & D Program of Shaanxi Province(No.2020GY-273)Xi′an Polytechnic University Keqiao Textile Industry Innovation Research Institute Collaborative Innovation Project 19KQZD01Xi′an Science and Technology Project GXYD7.3Key R & D Program of Shaanxi Province 2020GY-273

Figures(7)

  • Surface enhanced Raman scattering (SERS) is a molecular detection spectroscopy technique. With the help of the SERS substrate, trace molecules in complex systems such as biology and chemistry can be analyzed. Among them, the electrospun nanofiber SERS substrate has the characteristics of high specific surface area, air permeability, water permeability, flexibility, foldability and bending. In the application scenarios of extracting and detecting trace molecules in complex systems, its surface structure has unmatched by other rigid SERS substrates. However, the development of electrospun nanofiber SERS substrates is limited by the preparation method, which has the problems of low detection sensitivity and complicated preparation process. Therefore, the current research work mainly focuses on the development of new preparation methods and processes. This article reviews several common preparation methods for SERS substrates of electrospun nano-gold-silver composite fibers, including direct mixed spinning, chemical adsorption, electrostatic adsorption, physical deposition, and in-situ chemical reduction, and summarizes the application of electrospinning nanofiber SERS substrate in the extraction, filtration and concentration of molecules to be tested in complex systems, and finally the prospect of the development of electrospun nano-composite fiber SERS substrate.
  • 加载中
    1. [1]

      Prikhozhdenko E S, Bratashov D N, Gorin D A. Flexible Surface-Enhanced Raman Scattering-Active Substrates Based on Nanofibrous Membranes[J]. Nano Res, 2018,11(9):4468-4488. doi: 10.1007/s12274-018-2064-2

    2. [2]

      Chen D Z, Zhu X D, Song Z X. Polydopamine@Gold Nanowaxberry Enabling Improved SERS Sensing of Pesticides, Pollutants, and Explosives in Complex Samples[J]. Anal Chem, 2018,90(15):9048-9054. doi: 10.1021/acs.analchem.8b01348

    3. [3]

      Chen D Z, Ning P, Zhang Y. Ta@Ag Porous Array with High Stability and Biocompatibility for SERS Sensing of Bacteria[J]. ACS Appl Mater Interfaces, 2020,12(17):20138-20144. doi: 10.1021/acsami.0c03630

    4. [4]

      Song D, Yang R, Long F. Applications of Magnetic Nanoparticles in Surface-Enhanced Raman Scattering (SERS) Detection of Environmental Pollutants[J]. J Environ Sci (China), 2019,80:14-34. doi: 10.1016/j.jes.2018.07.004

    5. [5]

      Lee C H, Tian L, Singamaneni S. Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces[J]. ACS Appl Mater Interfaces, 2010,2(12):3429-3435. doi: 10.1021/am1009875

    6. [6]

      Alyami A, Quinn A J, Iacopino D. Flexible and Transparent Surface Enhanced Raman Scattering (SERS)-Active AgNPs/PDMS Composites for in-situ Detection of Food Contaminants[J]. Talanta, 2019,201:58-64. doi: 10.1016/j.talanta.2019.03.115

    7. [7]

      Chen J, Wu X M, Huang Y W. Detection of E.coli Using SERS Active Filters with Silver Nanorod Array[J]. Sens Actuators, 2014,191:485-490. doi: 10.1016/j.snb.2013.10.038

    8. [8]

      Shi Y, Li L M, Yang M. A Disordered Silver Nanowires Membrane for Extraction and Surface-Enhanced Raman Spectroscopy Detection[J]. Analyst, 2014,139(10):2525-2530. doi: 10.1039/C4AN00163J

    9. [9]

      Zhong L B, Yin J, Zheng Y M. Self-assembly of Au Nanoparticles on PMMA Template as Flexible, Transparent, and Highly Active SERS Substrates[J]. Anal Chem, 2014,86(13):6262-6267. doi: 10.1021/ac404224f

    10. [10]

      Shiohara A, Langer J, Polavarapu L. Solution Processed Polydimethylsiloxane/Gold Nanostar Flexible Substrates for Plasmonic Sensing[J]. Nanoscale, 2014,6(16):9817-9823. doi: 10.1039/C4NR02648A

    11. [11]

      YANG Yue, WENG Guojun, ZHAO Jing. Progresses of Preparation and Applications of Paper-Based Surface-Enhanced Raman Scattering Substrate[J]. Chinese J Lasers, 2018,45(3):116-126.  

    12. [12]

      Xu C, Wang X. Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates[J]. Small, 2009,5(19):2212-2217. doi: 10.1002/smll.200900548

    13. [13]

      Xu W G, Ling X, Xiao J Q. Surface Enhanced Raman Spectroscopy on a Flat Graphene Surface[J]. Proc Natl Acad Sci USA, 2012,109(24):9281-9286. doi: 10.1073/pnas.1205478109

    14. [14]

      Chen D Z, Song Z X, Chen F. Simply Controllable Growth of Single Crystal Plasmonic Au-Ag Nanospines with Anisotropic Multiple Site for Highly Sensitive and Uniform Surface-Enhanced Raman Scattering Sensing[J]. RSC Adv, 2016,6:66056-66065. doi: 10.1039/C6RA13420C

    15. [15]

      ZHU Yuezhou, ZHANG Yuejiao, LI Jianfeng. Surface-Enhanced Raman Spectroscopy:Applications and Perspectives[J]. Chinese J Appl Chem, 2018,35(9):984-992.  

    16. [16]

      He D, Hu B, Yao Q F. Large-scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity:Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles[J]. ACS Nano, 2009,3(12):3993-4002. doi: 10.1021/nn900812f

    17. [17]

      Zhang C L, Lv K P, Cong H P. Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning[J]. Small, 2012,8(5):648-653. doi: 10.1002/smll.201102230

    18. [18]

      Zhang C L, Lv K P, Huang H T. Co-assembly of Au Nanorods with Ag Nanowires within Polymer Nanofiber Matrix for Enhanced SERS Property by Electrospinning[J]. Nanoscale, 2012,4(17):5348-5355. doi: 10.1039/c2nr30736g

    19. [19]

      Zhang C L, Lv K P, Hu N Y. Macroscopic-Scale Alignment of Ultralong Ag Nanowires in Polymer Nanofiber Mat and Their Hierarchical Structures by Magnetic-Field-Assisted Electrospinning[J]. Small, 2012,8(19):2936-2940. doi: 10.1002/smll.201201353

    20. [20]

      Li X F, Cao M H, Zhang H. Surface-Enhanced Raman Scattering-Active Substrates of Electrospun Polyvinyl Alcohol/Gold-Silver Nanofibers[J]. J Colloid Interface Sci, 2012,382(1):28-35. doi: 10.1016/j.jcis.2012.05.048

    21. [21]

      Chen S Y, Wang L Y, Dong X. Fabrication of Monodispersed Au@Ag Bimetallic Nanorod-Loaded Nanofibrous Membrane with Fast Thermo-responsiveness and Its Use as a Smart Free-Standing SERS Substrate[J]. RSC Adv, 2016,6(54):48479-48488. doi: 10.1039/C6RA04247C

    22. [22]

      Zhu H, Du M L, Zhang M. Self-assembly of Various Au Nanocrystals on Functionalized Water-Stable PVA/PEI Nanofibers:A Highly Efficient Surface-Enhanced Raman Scattering Substrates with High Density of "Hot" Spots[J]. Biosens Bioelectron, 2014,54:91-101. doi: 10.1016/j.bios.2013.10.047

    23. [23]

      Lee C H, Tian L, Abbas A. Directed Assembly of Gold Nanorods Using Aligned Electrospun Polymer Nanofibers for Highly Efficient SERS Substrates[J]. Nanotechnology, 2011,22(27)275311. doi: 10.1088/0957-4484/22/27/275311

    24. [24]

      Tang W Q, Chase D B, Rabolt J F. Immobilization of Gold Nanorods onto Electrospun Polycaprolactone Fibers via Polyelectrolyte Decoration-A 3D SERS Substrate[J]. Anal Chem, 2013,85(22):10702-10709. doi: 10.1021/ac400241z

    25. [25]

      Yang T, Ma J, Zhen S J. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing[J]. ACS Appl Mater Interfaces, 2016,8(23):14802-14811. doi: 10.1021/acsami.6b03720

    26. [26]

      Liu Z C, Yan Z D, Jia L. Gold Nanoparticle Decorated Electrospun Nanofibers:A 3D Reproducible and Sensitive SERS Substrate[J]. Appl Surf Sci, 2017,403:29-34. doi: 10.1016/j.apsusc.2017.01.157

    27. [27]

      Jia P, Cao B, Wang J Q. Self-assembly of Various Silver Nanocrystals on PmPD/PAN Nanofibers as a High-Performance 3D SERS Substrate[J]. Analyst, 2015,140(16):5707-5715. doi: 10.1039/C5AN00716J

    28. [28]

      Szymborski T, Witkowska E, Adamkiewicz W. Electrospun Polymer Mat as a SERS Platform for the Immobilization and Detection of Bacteria from Fluids[J]. Analyst, 2014,139(20):5061-5064. doi: 10.1039/C4AN01137F

    29. [29]

      Chamuah N, Bhuyan N, Das P P. Gold-coated Electrospun PVA Nanofibers as SERS Substrate for Detection of Pesticides[J]. Sens Actuators, B, 2018,273:710-717. doi: 10.1016/j.snb.2018.06.079

    30. [30]

      Zhao X F, Li C H, Li Z. In-situ Electrospun Aligned and Maize-like AgNPs/PVA@Ag Nanofibers for Surface-Enhanced Raman Scattering on Arbitrary Surface[J]. Nanophotonics, 2019,8(10):1719-1729. doi: 10.1515/nanoph-2019-0124

    31. [31]

      Severyukhina A N, Parakhonskiy B V, Prikhozhdenko E S. Nanoplasmonic Chitosan Nanofibers as Effective SERS Substrate for Detection of Small Molecules[J]. ACS Appl Mater Interfaces, 2015,7(28):15466-15473. doi: 10.1021/acsami.5b03696

    32. [32]

      Amarjargal A, Tijing L D, Shon H K. Facile in situ Growth of Highly Monodispersed Ag Nanoparticles on Electrospun PU Nanofiber Membranes:Flexible and High Efficiency Substrates for Surface Enhanced Raman Scattering[J]. Appl Surf Sci, 2014,308:396-401. doi: 10.1016/j.apsusc.2014.04.188

    33. [33]

      Zhang L F, Gong X, Bao Y. Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering[J]. Langmuir, 2012,28(40):14433-14440. doi: 10.1021/la302779q

    34. [34]

      Bao Y, Lai C L, Zhu Z T. SERS-Active Silver Nanoparticles on Electrospun Nanofibers Facilitated via Oxygen Plasma Etching[J]. RSC Adv, 2013,3(23):8998-9004. doi: 10.1039/c3ra41322e

    35. [35]

      Zhao Y, Sun L, Xi M. Electrospun TiO2 Nanofelt Surface-Decorated with Ag Nanoparticles as Sensitive and UV-Cleanable Substrate for Surface Enhanced Raman Scattering[J]. ACS Appl Mater Interfaces, 2014,6(8):5759-5767. doi: 10.1021/am5005859

    36. [36]

      Jia P, Chang J, Wang J Q. Fabrication and Formation Mechanism of Ag Nanoplate-Decorated Nanofiber Mats and Their Application in SERS[J]. Chem-Asian J, 2016,11(1):86-92. doi: 10.1002/asia.201500777

    37. [37]

      Qian Y W, Meng G W, Huang Q. Flexible Membranes of Ag-Nanosheet-Grafted Polyamide-Nanofibers as Effective 3D SERS Substrates[J]. Nanoscale, 2014,6(9):4781-4788. doi: 10.1039/c3nr06483b

    38. [38]

      Cao M H, Cheng S, Zhou X Z. Preparation and Surface-Enhanced Raman Performance of Electrospun Poly(vinyl alcohol)/High-Concentration-Gold Nanofibers[J]. J Polym Res, 2012,19(1):9810-9816. doi: 10.1007/s10965-011-9810-4

    39. [39]

      Yang H, Huang C Z. Polymethacrylic Acid-Facilitated Nanofiber Matrix Loading Ag Nanoparticles for SERS Measurements[J]. RSC Adv, 2014,4(73):38783-38790. doi: 10.1039/C4RA05737F

    40. [40]

      Liu X Y, Wang L Y, Chen S Y. Silver Nanoparticles Embedded Temperature-Sensitive Nanofibrous Membrane as a Smart Free-Standing SERS Substrate[J]. Chinese Chem Lett, 2019,30(12):2021-2026. doi: 10.1016/j.cclet.2019.04.031

    41. [41]

      Celebioglu A, Aytac Z, Umu O C. One-Step Synthesis of Size-Tunable Ag Nanoparticles Incorporated in Electrospun PVA/Cyclodextrin Nanofibers[J]. Carbohydr Polym, 2014,99:808-816. doi: 10.1016/j.carbpol.2013.08.097

    42. [42]

      Yang T, Yang H, Zhen S J. Hydrogen-Bond-Mediated in situ Fabrication of AgNPs/Agar/PAN Electrospun Nanofibers as Reproducible SERS Substrates[J]. ACS Appl Mater Interfaces, 2015,7(3):1586-1594. doi: 10.1021/am507010q

    43. [43]

      Jalaja K, Bhuvaneswari S, Ganiga M. Effective SERS Detection Using a Flexible Wiping Substrate Based on Electrospun Polystyrene Nanofibers[J]. Anal Methods UK, 2017,9(26):3998-4003. doi: 10.1039/C7AY00882A

    44. [44]

      Wang L, Zhang Y, Zhang W Q. Laser-induced Plasmonic Heating on Silver Nanoparticles/Poly(N-isopropylacrylamide) Mats for Optimizing SERS Detection[J]. J Raman Spectrosc, 2016,48(2):243-250.

    45. [45]

      Shao J D, Tong L P, Tang S Y. PLLA Nanofibrous Paper-Based Plasmonic Substrate with Tailored Hydrophilicity for Focusing SERS Detection[J]. ACS Appl Mater Interfaces, 2015,7(9):5391-5399. doi: 10.1021/am508881k

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    7. [7]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    14. [14]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    18. [18]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    19. [19]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    20. [20]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

Metrics
  • PDF Downloads(16)
  • Abstract views(1551)
  • HTML views(507)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return