Citation: WANG Yichen, LUO Jing, LIU Ren, DAI Shenghua. Progress in Preparation of Graphene Hollow Microspheres[J]. Chinese Journal of Applied Chemistry, ;2020, 37(12): 1374-1383. doi: 10.11944/j.issn.1000-0518.2020.12.200163 shu

Progress in Preparation of Graphene Hollow Microspheres

  • Corresponding author: LUO Jing, jingluo19801007@126.com
  • Received Date: 1 June 2020
    Revised Date: 22 June 2020
    Accepted Date: 23 July 2020

    Fund Project: the National Natural Science Foundation of China 51873080Supported by the National Natural Science Foundation of China(No.51873080)

Figures(6)

  • With excellent electrical conductivity, mechanical properties and large specific surface areas, graphene is a new material with great potentials. However, graphene is prone to stacking because of the intermolecular forces and π-π interaction between sheets. Constructing a three-dimensional hollow microsphere structure not only effectively prevents the agglomeration of graphene sheets, ensures a large specific surface area and excellent properties, but also has unique advantages of regular structures and adjustable sizes. This article describes the preparation methods of graphene hollow microspheres reported in recent years. It is mainly arranged and analyzed according to two major categories:template method and templateless method, and the template method is divided into two categories:hard template method and soft template method. Introductions and examples of various technologies applied in the preparation of graphene hollow microspheres are presented. The review concludes with the analyses and summaries of the hard template method, soft template method and templateless method respectively, as well as a discussion of future perspectives.
  • 加载中
    1. [1]

      Lee T, Min S H, Gu M. Layer-by-layer Assembly for Graphene-based Multilayer Nanocomposites:Synthesis and Applications[J]. Chem Mater, 2015,27:3785-3796. doi: 10.1021/acs.chemmater.5b00491

    2. [2]

      Jiang L, Fan Z. Design of Advanced Porous Graphene Materials:From Graphene Nano Mesh to 3D Architectures[J]. Nanoscale, 2014,6:1922-1945. doi: 10.1039/C3NR04555B

    3. [3]

      Li S, Pasc A, Fierro V, Celzard A. Hollow Carbon Spheres, Synthesis and Applications-A Review[J]. J Mater Chem A, 2016,4:12686-12713. doi: 10.1039/C6TA03802F

    4. [4]

      Liu T, Zhang L Y, Cheng B. Hollow Carbon Spheres and Their Hybrid Nanomaterials in Electrochemical Energy Storage[J]. Adv Energy Mater, 2019,9:1614-6832.

    5. [5]

      Yan W, Wang L, Chen C. Polystyrene Microspheres-Templated Nitrogen-Doped Graphene Hollow Spheres as Metal-Free Catalyst for Oxygen Reduction Reaction[J]. Electrochim Acta, 2016,188:230-239. doi: 10.1016/j.electacta.2015.11.146

    6. [6]

      Jiang Z, Zhao X, Tian X. Hydrothermal Synthesis of Boron and Nitrogen Codoped Hollow Graphene Microspheres with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction[J]. ACS Appl Mater Interfaces, 2015,7:19398-19407. doi: 10.1021/acsami.5b05585

    7. [7]

      Trung N B, Van Tam T, Kim H R. Three-Dimensional Hollow Balls of Graphene-Polyaniline Hybrids for Supercapacitor Applications[J]. Chem Eng J, 2014,255:89-96. doi: 10.1016/j.cej.2014.06.028

    8. [8]

      Fan W, Zhang C, Tjiu W W. Graphene-wrapped Polyaniline Hollow Spheres as Novel Hybrid Electrode Materials for Supercapacitor Applications[J]. ACS Appl Mater Interfaces, 2013,5:3382-3391. doi: 10.1021/am4003827

    9. [9]

      Hong J, Char K, Kim B S. Hollow Capsules of Reduced Graphene Oxide Nanosheets Assembled on a Sacrificial Colloidal Particle[J]. J Phys Chem Lett, 2010,1(24):3442-3445. doi: 10.1021/jz101441a

    10. [10]

      Fan W, Xia Y, Tjiu W. Nitrogen-doped Graphene Hollow Nanospheres as Novel Electrode Materials for Supercapacitor Applications[J]. J Power Sources, 2013,243:973-981. doi: 10.1016/j.jpowsour.2013.05.184

    11. [11]

      Luo J, Ma Q, Gu H. Three-dimensional Graphene-Polyaniline Hybrid Hollow Spheres by Layer-by-Layer Assembly for Application in Supercapacitor[J]. Electrochim Acta, 2015,173:184-192. doi: 10.1016/j.electacta.2015.05.053

    12. [12]

      Yang D, Chen S, Huang P. Bacteria-Template Synthesized Silver Microspheres with Hollow and Porous Structures as Excellent SERS Substrate[J]. Green Chem, 2010,12:2038-2042. doi: 10.1039/c0gc00431f

    13. [13]

      Wang S, Gu F, L M K. Sonochemical Synthesis of Hollow PbS Nanospheres[J]. Langmuir, 2006,22:398-401. doi: 10.1021/la0518647

    14. [14]

      Chen G, Xia D, Nie Z. Facile Synthesis of Co-Pt Hollow Sphere Electrocatalyst[J]. Chem Mater, 2007,19:1840-1844. doi: 10.1021/cm062336z

    15. [15]

      Sohn K, Joo Na Y, Chang H. Oil Absorbing Graphene Capsules by Capillary Molding[J]. Chem Commun, 2012,48:5968-5970. doi: 10.1039/c2cc32049e

    16. [16]

      Byun A, Shim J, Han S W. One-pot Microfluidic Fabrication of Graphene Oxide-patched Hollow Hydrogel Microcapsules with Remarkable Shell Impermeability[J]. Chem Commun, 2015,51:12756-12759. doi: 10.1039/C5CC04547A

    17. [17]

      Guo P, Song H, Chen X. Hollow Graphene Oxide Spheres Self-assembled by W/O Emulsion[J]. J Mater Chem, 2010,20:4867-4874. doi: 10.1039/b927302f

    18. [18]

      Luo Q, Wei P, Pentzer E. Hollow Microcapsules by Stitching Together of Graphene Oxide Nanosheets with a Di-functional Small Molecule[J]. Carbon, 2016,106:125-131. doi: 10.1016/j.carbon.2016.05.024

    19. [19]

      Thickett S C, Wood N, Ng Y H. Hollow Hybrid Polymer-Graphene Oxide Nanoparticles via Pickering Miniemulsion Polymerization[J]. Nanoscale, 2014,6:8590-8594. doi: 10.1039/C4NR01175A

    20. [20]

      Teo G H, Ng Y H, Zetterlund P B. Factors Influencing the Preparation of Hollow Polymer-Graphene Oxide Microcapsules via Pickering Miniemulsion Polymerization[J]. Polymer, 2015,63:1-9. doi: 10.1016/j.polymer.2015.02.035

    21. [21]

      Ali M, Meaney S P, Abedin M J. Graphene Oxide-silica Hybrid Capsules for Sustained Fragrance Release[J]. J Colloid Interface Sci, 2019,552:528-539. doi: 10.1016/j.jcis.2019.05.061

    22. [22]

      Luo J, Chen Y, Zheng Y. Hollow Graphene-Polyaniline Hybrid Spheres Using Sulfonated Graphene as Pickering Stabilizer for High Performance Supercapacitors[J]. Electrochim Acta, 2018,272:221-232. doi: 10.1016/j.electacta.2018.04.011

    23. [23]

      Hu J, Chen M, Fang X. Fabrication and Application of Inorganic Hollow Spheres[J]. Chem Soc Rev, 2011,40:5472-5491. doi: 10.1039/c1cs15103g

    24. [24]

      Liu B, Zeng H. Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors[J]. Small, 2005,1:566-571. doi: 10.1002/smll.200500020

    25. [25]

      Ostwald W. Vber die Vermeintliche Isomerie des Roten und Gelben Quecksilberoxyds und die Oberflächenspannung Fester Körper[J]. Z Phys Chem, 1900,34(1):495-503.

    26. [26]

      Kim K, Voorhees P W. Ostwald Ripening of Spheroidal Particles in Multicomponent Alloys[J]. Acta Mater, 2018,152:327-337. doi: 10.1016/j.actamat.2018.04.041

    27. [27]

      Bera S, Pal M, Naskar A. Hierarchically Structured ZnO-Graphene Hollow Microspheres Towards Effective Reusable Adsorbent for Organic Pollutant via Photodegradation Process[J]. J Alloy Compd, 2016,669:177-186. doi: 10.1016/j.jallcom.2016.02.007

    28. [28]

      CHEN Chen. Preparation of Crimpled Graphene Micro-spheres and Its Applications in Composites[D]. Zhejiang: Zhejiang University, 2018.

    29. [29]

      Mei R, Song X, Hu Y. Hollow Reduced Graphene Oxide Microspheres as a High-Performance Anode Material for Li-Ion Batteries[J]. Electrochim Acta, 2015,153:540-545. doi: 10.1016/j.electacta.2014.05.154

    30. [30]

      Wang Y, Cao J, Rao J. Electron Beam "Ballooned" Carbon Sphere Derived from Graphene Oxide by a Hydrazine Assisted Hydrothermal Method[J]. RSC Adv, 2014,4:5826-5829. doi: 10.1039/c3ra46027d

    31. [31]

      MU Ya'nan. Study on the Preparation of GR/CNTs/MnO2 Hollow Composite Microspheres and Its Application in Supercapacitors[D]. Shanxi: Northwest University, 2017。

    32. [32]

      ZENG Qiang. Design and Preparation of Magnetic Particles-Cotaining Graphene Hollow Micropheres and Their Microwave Absorption Performance[D]. Dalian: Dalian University of Technology, 2017

    33. [33]

      XU Zehai. Design of Novel Functionalized Hollow Microspheres and Composites for Versatile Purposes[D]. Zhejiang: Zhejiang University of Technology, 2017.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    5. [5]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    17. [17]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    18. [18]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    19. [19]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    20. [20]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

Metrics
  • PDF Downloads(23)
  • Abstract views(1566)
  • HTML views(651)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return