Citation: JIANG Tao, DU Lianyun, ZHU Shuang, WANG Huan, ZHAN Yu, YU Ping, ZHANG Zhe, WANG Enpeng, CHEN Changbao. Rapid Determination of Three Components in Cosmetics by Using Direct Real-time Analysis Ionization Mass Spectrometry[J]. Chinese Journal of Applied Chemistry, ;2020, 37(11): 1333-1339. doi: 10.11944/j.issn.1000-0518.2020.11.200202 shu

Rapid Determination of Three Components in Cosmetics by Using Direct Real-time Analysis Ionization Mass Spectrometry

  • Corresponding author: WANG Enpeng, robbinwang@163.com CHEN Changbao, ccb@126.com
  • Received Date: 3 July 2020
    Revised Date: 5 August 2020
    Accepted Date: 4 September 2020

    Fund Project: Jilin Province Science and Technology Development Plan Project 20190201297JCthe National Key Research and Development prijects 2019YFC1710704Jilin Province Science and Technology Development Plan Project 20200504003YYhe Major Special Project of Science and the Technology Innovation of Changchun Science and Technology Bureau 17YJ008Supported by the National Key Research and Development prijects(No.2019YFC1710704), Jilin Province Science and Technology Development Plan Project(No.20200404042YY, No.20190201297JC, No.20190304099YY, No.20200504003YY), the Major Special Project of Science and the Technology Innovation of Changchun Science and Technology Bureau(No.17YJ008) and Jiayi Biological R & D Centre (Suzhou Industrial Park) Co., LTDJilin Province Science and Technology Development Plan Project 20200404042YYJilin Province Science and Technology Development Plan Project 20190304099YY

Figures(3)

  • A rapid method for the determination of the contraindicated component urocanic acid(URA), approved sunscreens 2-ethylhexyl 4-methoxycinnamate(EHMC) and butyl-methoxydibenzoylmethane(B-MDM) in cosmetics were developed using direct analysis in real time (DART) of ion sources combined with four-pole flight mass spectroscopy. For qualitative analysis by positive ions, the Full MS/Targeted MS2 mode is applied to obtain the mass spectrum and cosmetics can be directly analyzed in the ionized area. For quantitative analysis, DART parameters are systematically optimized to achieve the best detection performance and the module sampler is used for automatic sampling. The linear range of three kinds of components is 25~1000 mg/L in the calibration curve with a good linear relationship (r>0.99). The lowest limit of detection (S/N=3) is 7.5 mg/L and the minimum quantitative limit (S/N=10) is 25 mg/L. The method recovery is 96.7%~109.2% and the precision RSD (n=6) is 3.59%~11.23%. The method is simple, rapid, efficient and environmentally-friend. It can be widely used in the rapid screening and quantitative detection of banned additives in cosmetics.
  • 加载中
    1. [1]

      LAN Cao, SHAO Linzhi, CHEN Simin. Rapid Determination of Chloramphenicol in Cosmetics Using Direct Real-time Analsis-High Resolution Mass Spectrometry[J]. Instrum Anal, 2019,38(12):1503-1506.

    2. [2]

      LIAO Huayong, WANG Jing, LI Hongyu. Rapid Determination of 17 Quinolones in Cosmetics Using Ultra-perforance Liquid Chromatography-Quadrupole/Eletrostatic Field Orbitrap High Resolution Mass Spectrometry[J]. Instrum Anal, 2019,38(9):1102-1107.  

    3. [3]

      DING Yi. Investigation on the Changes of Sunscreen Agents Using in Sunblock Cosmetics During 2007-2015[J]. Chinese J Health Lab Technol, 2016,26(6):882-884.  

    4. [4]

      Giokas D L, Salvador A, Chisvert A. UV:From Sunscreens to Human Body and the Environment[J]. TrAC Trends Anal Chem, 2007,26(5):360-374. doi: 10.1016/j.trac.2007.02.012

    5. [5]

      ZHANG Jialing, HUO Feifeng, ZHOU Zhigui. The Principles and Applications of an Ambient Ionization Method-Direct Analysis in Real Time (DART)[J]. Prog Chem, 2012,24(11):101-109.  

    6. [6]

      LUO Shaoqiang, TANG Qingtao, WU Zhiyun. Simultaneous Determination of UV Filters in Cosmetic[J]. Deterg Cosmet, 2010,33(8)14.  

    7. [7]

      MA Jie, LIN Weixuan. Determination of Sunscreen Agents in Cosmetics by Reversed-phase High Performance Liquid Chromatography[J]. China Surfactant Deterg Cosmet, 2010,40(3)225.

    8. [8]

      XU Yinyu. Damage and Detection of Hormone in Cosmetics[J]. Chem Enterprise Manage, 2018(16):38-39.

    9. [9]

      Nakajima M, Kawakami T, Niino T. Aquatic Fate of Sunscreen Agents Octyl-4-methoxycinnamate and Octyl-4-dimethylaminobenzoate in Model Swimming Pools and the Mutagenic Assays of Their Chlorination Byproducts[J]. J Health Sci, 2009,55(3):363-372. doi: 10.1248/jhs.55.363

    10. [10]

      XIE Jianjun, WANG Lu, LI Ju. Determination of 16 Polycyclic Aromatic Hydrocarbons in Cream Cosmetic with Gas Chromatography-Mass Spectrometry[J]. Guangzhou Chem Ind, 2018,46(7):84-87.  

    11. [11]

      Gross J H. Direct Analysis in Real time-A Critical Review on DART-MS[J]. Anal Biochem, 2014,406(1):63-80.  

    12. [12]

      Sisco E L, Robinson E. Determination of Ethanol Concentration in Alcoholic Beverages by Direct Analysis in Real Time Mass Spectrometry (DART-MS)[J]. Forensic Chem, 202018.  

    13. [13]

      SUN Yu'an, KE Wei, LI Zhenxing. Rapid Screening of Sulfonamides Drugs in Animal Feed Using DART-Orbitrap High Resolution Mass Spectrometry[J]. Mass Spectrom, 2014,35(1):52-58.  

    14. [14]

      GUO Yunlong, LI Lele, DAI Yulin. Rapid Qualitative Analysis of Zuojin Pills by DART-Q-TOF-MS[J]. Chinese Anal Lab, 2016,35(1):47-50.  

    15. [15]

      ZHAO Zhidong. Direct Analysis in Real Time-Mass Spectrometry(DART-MS) Application in Forensic Science[J]. Guangdong Gong'an Keji, 2014,1:42-46.  

    16. [16]

      Khaled A, Belinato J R, Pawliszyn R. Rapid and High-Throughput Screening of Multi-residue Pharmaceutical Drugs in Bovine Tissue Using Solid Phase Microextraction and Direct Analysis in Real Time-Tandem Mass Spectrometry (SPME-DART-MS/MS)[J]. Talanta, 2020,217121095. doi: 10.1016/j.talanta.2020.121095

    17. [17]

      XU Jiaquan, XIAO Yipo, CHEN Huanwen. Current Application Status of DART-MS in China[J]. Mass Spectrom, 2017,39(1):120-128.  

    18. [18]

      GAO Yunyun. Introduction of DART-MS/MS Method and Review of Pesticide Residue Detection Methods[J]. Gansu Sci Technol, 2018,34(18):40-41, 36.  

    19. [19]

      SHA Yunfei, XIE Wenyan, WANG Haoyang. Study on Background Ions under DART Ionization Conditions by High Resolution Mass Spectrometry and Their Potential Applications[J]. Instrum Anal, 2018,37(10):1264-1268.  

    20. [20]

      GUO Yunlong, WANG Yang, LI Bo. Identification of Illegal Addition of Auramine O in Chinese Medicine by Direct Analysis in Real Time Mass Spectrometry[J]. Chinese Anal Lab, 2014,33(11):1245-1248.  

    21. [21]

      LI Lele, GUO Yunlong, LIU Wenlong. Rapid Analysis of Scutellaria Radix by Using DART Coupled with Orbitrap Mass Spectrometry[J]. Instrum Anal, 2016,35(7):859-863.  

  • 加载中
    1. [1]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    2. [2]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    3. [3]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    4. [4]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    5. [5]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    8. [8]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    9. [9]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    14. [14]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    16. [16]

      Lanjun Cheng Xinyuan Wang Jie An Xiang Wu Chengfeng Zhu Yanming Fu Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010

    17. [17]

      Yumiao Gao Yixin Chen Jiaxin Wei Junjie Yu Yunxia Wang . Guarding the Kingdom: Skin Allies with Sunscreen for Mutual Protection. University Chemistry, 2024, 39(9): 74-80. doi: 10.12461/PKU.DXHX202404149

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    20. [20]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

Metrics
  • PDF Downloads(5)
  • Abstract views(1408)
  • HTML views(394)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return