Citation: MO Yanhong, LI Hui, WANG Bin, XU Xiaohui, LIU Sisi, ZENG Dongdong. Research on the Enhanced Activity of Hemin/G-Quadruplex DNAzyme and Its Application in Biosensors[J]. Chinese Journal of Applied Chemistry, ;2020, 37(11): 1249-1261. doi: 10.11944/j.issn.1000-0518.2020.11.200153 shu

Research on the Enhanced Activity of Hemin/G-Quadruplex DNAzyme and Its Application in Biosensors

  • Corresponding author: ZENG Dongdong, zengdd@sumhs.edu.cn
  • Received Date: 21 May 2020
    Revised Date: 19 June 2020
    Accepted Date: 8 July 2020

    Fund Project: Shanghai Natural Science Foundation 19ZR1474300Supported by Shanghai Natural Science Foundation(No.19ZR1474300) and Shanghai Key Laboratory of Molecular Imaging Project(No.18DZ2260400)Shanghai Key Laboratory of Molecular Imaging Project 18DZ2260400

Figures(5)

  • Hemin/G-quadruplex DNAzyme is a type of DNA molecule with peroxidase-like activity. Because of its excellent activity, easy modification and programmability, it has been widely used in biosensors and other fields. This article first briefly introduces the structure of G-quadruplex, and then reviews the strategies for enhancing hemin/G-quadruplex DNAzyme activity and application of biosensors based on hemin/G-quadruplex DNAzyme in the detection of biomarkers, microorganisms, biotoxins and metal ions. We also prospect the development trend of hemin/G-quadruplex DNAzyme.
  • 加载中
    1. [1]

      Liese A, Hilterhaus L. Evaluation of Immobilized Enzymes for Industrial Applications[J]. Chem Soc Rev, 2013,42(15):6236-6249. doi: 10.1039/c3cs35511j

    2. [2]

      Breaker R R, Joyce G F. A DNA Enzyme that Cleaves RNA[J]. Chem Biol, 1994,1(4):223-229. doi: 10.1016/1074-5521(94)90014-0

    3. [3]

      Travascio P, Li Y, Sen D. DNA-Enhanced Peroxidase Activity of a DNA Aptamer-Hemin Complex[J]. Chem Biol, 1998,5(9):505-517. doi: 10.1016/S1074-5521(98)90006-0

    4. [4]

      Gellert M, Lipsett M N, Davies D R. Helix Formation by Guanylic Acid[J]. Proc Natl Acad Sci USA, 1962,48(12)2013. doi: 10.1073/pnas.48.12.2013

    5. [5]

      Cheng X, Liu X, Bing T. General Peroxidase Activity of G-Quadruplex-Hemin Complexes and Its Application in Ligand Screening[J]. Biochemistry, 2009,48(33):7817-7823. doi: 10.1021/bi9006786

    6. [6]

      Kong D M, Wu J, Wang N. Peroxidase Activity-Structure Relationship of the Intermolecular Four-Stranded G-Quadruplex-Hemin Complexes and Their Application in Hg2+ Ion Detection[J]. Talanta, 2009,80(2):459-465. doi: 10.1016/j.talanta.2009.07.010

    7. [7]

      Kong D M, Yang W, Wu J. Structure Function Study of Peroxidase-Like G-Quadruplex-Hemin Complexes[J]. Analyst, 2010,135(2):321-326. doi: 10.1039/B920293E

    8. [8]

      Cheng M, Zhou J, Jia G. Relations Between the Loop Transposition of DNA G-Quadruplex and the Catalytic Function of DNAzyme[J]. Biochim Biophy Acta Gen Subj, 2017,1861(8):1913-1920. doi: 10.1016/j.bbagen.2017.05.016

    9. [9]

      Burge S, Parkinson G N, Hazel P. Quadruplex DNA:Sequence, Topology and Structure[J]. Nucleic Acids Res, 2006,34(19):5402-5415. doi: 10.1093/nar/gkl655

    10. [10]

      Nakayama S, Sintim H O. Investigating the Interactions Between Cations, Peroxidation Substrates and G-Quadruplex Topology in DNAzyme Peroxidation Reactions Using Statistical Testing[J]. Anal Chim Acta, 2012,747:1-6. doi: 10.1016/j.aca.2012.08.008

    11. [11]

      Kong D M, Xu J, Shen H X. Positive Effects of ATP on G-Quadruplex-Hemin DNAzyme-Mediated Reactions[J]. Anal Chem, 2010,82(14):6148-6153. doi: 10.1021/ac100940v

    12. [12]

      Stefan L, Denat F, Monchaud D. Insights into How Nucleotide Supplements Enhance the Peroxidase-Mimicking DNAzyme Activity of the G-Quadruplex/Hemin System[J]. Nucleic Acids Res, 2012,40(17):8759-8772. doi: 10.1093/nar/gks581

    13. [13]

      Stefan L, Denat F, Monchaud D. Deciphering the DNAzyme Activity of Multimeric Quadruplexes:Insights into Their Actual Role in the Telomerase Activity Evaluation Assay[J]. J Am Chem Soc, 2011,133(50):20405-20415. doi: 10.1021/ja208145d

    14. [14]

      Qi C, Zhang N, Yan J. Activity Enhancement of G-Quadruplex/Hemin DNAzyme by Spermine[J]. RSC Adv, 2014,4(3):1441-1448. doi: 10.1039/C3RA45429K

    15. [15]

      Li T, Wang E, Dong S. A Grafting Strategy for the Design of Improved G-Quadruplex Aptamers and High-Activity DNAzymes[J]. PloS one, 2009,4(4)e5126. doi: 10.1371/journal.pone.0005126

    16. [16]

      Chang T, Gong H, Ding P. Activity Enhancement of G-Quadruplex/Hemin DNAzyme by Flanking d(CCC)[J]. Chem-Eur J, 2016,22(12):4015-4021. doi: 10.1002/chem.201504797

    17. [17]

      Li W, Li Y, Liu Z. Insight into G-Quadruplex-Hemin DNAzyme/RNAzyme:Adjacent Adenine as the Intramolecular Species for Remarkable Enhancement of Enzymatic Activity[J]. Nucleic Acids Res, 2016,44(15):7373-7384. doi: 10.1093/nar/gkw634

    18. [18]

      Chen J, Zhang Y, Cheng M. How Proximal Nucleobases Regulate the Catalytic Activity of G-Quadruplex/Hemin DNAzymes[J]. ACS Catal, 2018,8(12):11352-11361. doi: 10.1021/acscatal.8b03811

    19. [19]

      Virgilio A, Esposito V, Lejault P. Improved Performances of Catalytic G-Quadruplexes (G4-DNAzymes) via the Chemical Modifications of the DNA Backbone to Provide G-Quadruplexes with Double 3'-External G-Quartets[J]. Int J Biol Macromol, 2020,151:976-983. doi: 10.1016/j.ijbiomac.2019.10.181

    20. [20]

      Albada H B, Golub E, Willner I. Rational Design of Supramolecular Hemin/G-Quadruplex-Dopamine Aptamer Nucleoapzyme Systems with Superior Catalytic Performance[J]. Chem Sci, 2016,7(5):3092-3101. doi: 10.1039/C5SC04832J

    21. [21]

      Zhou Y C, Ran X X, Chen A Y. Efficient Electrochemical Self-Catalytic Platform Based on L-Cys-hemin/G-Quadruplex and Its Application for Bioassay[J]. Anal Chem, 2018,90(15):9109-9116. doi: 10.1021/acs.analchem.8b01526

    22. [22]

      Xiao L, Zhou Z, Feng M. Cationic Peptide Conjugation Enhances the Activity of Peroxidase-Mimicking DNAzymes[J]. Bioconjugate Chem, 2016,27(3):621-627. doi: 10.1021/acs.bioconjchem.5b00608

    23. [23]

      Wang Z G, Wang H, Liu Q. Designed Self-assembly of Peptides with G-Quadruplex/Hemin DNAzyme into Nanofibrils Possessing Enzyme-Mimicking Active Sites and Catalytic Functions[J]. ACS Catal, 2018,8(8):7016-7024. doi: 10.1021/acscatal.8b00896

    24. [24]

      Zeng D, San L, Qian F. Framework Nucleic Acid-Enabled Programming of Electrochemical Catalytic Properties of Artificial Enzymes[J]. ACS Appl Mater Interfaces, 2019,11(24):21859-21864.  

    25. [25]

      Kosman J, Zukowski K, Juskowiak B. Comparison of Characteristics and DNAzyme Activity of G4-Hemin Conjugates Obtained via Two Hemin Attachment Methods[J]. Molecular, 2018,23(6)1400. doi: 10.3390/molecules23061400

    26. [26]

      Liu Y, Lai P, Wang J. A Superior G-quadruplex DNAzyme Through Functionalized Modification of the Hemin Cofactor[J]. Chem Commun, 2020,56(16):2427-2430. doi: 10.1039/C9CC09729E

    27. [27]

      Adeoye R I, Osalaye D S, Ralebitso-Senior T K. Catalytic Activities of Multimeric G-Quadruplex DNAzymes[J]. Catalysts, 2019,9(7)613. doi: 10.3390/catal9070613

    28. [28]

      Strimbu K, Tavel J A. What are Biomarkers?[J]. Curr Opin HIV AIDS, 2010,5(6)463. doi: 10.1097/COH.0b013e32833ed177

    29. [29]

      Wei F, Patel P, Liao W. Electrochemical Sensor for Multiplex Biomarkers Detection[J]. Clin Cancer Res, 2009,15(13):4446-4452. doi: 10.1158/1078-0432.CCR-09-0050

    30. [30]

      Kong L, Wang D, Chai Y. Electrocatalytic Efficiency Regulation Between Target-Induced HRP-Mimicking DNAzyme and GOx with Low Background for Ultrasensitive Detection of Thrombin[J]. Anal Chem, 2019,91(15):10289-10294. doi: 10.1021/acs.analchem.9b02498

    31. [31]

      Chen S, Liu P, Su K. Electrochemical Aptasensor for Thrombin Using Co-catalysis of Hemin/G-Quadruplex DNAzyme and Octahedral Cu2O-Au Nanocomposites for Signal Amplification[J]. Biosens Bioelectron, 2018,99:338-345. doi: 10.1016/j.bios.2017.08.006

    32. [32]

      Sun Y, Wang X, Xu H. A Chemiluminescence Aptasensor for Thrombin Detection Based on Aptamer-Conjugated and Hemin/G-Quadruplex DNAzyme Signal-Amplified Carbon Fiber Composite[J]. Anal Chim Acta, 2018,1043:132-141. doi: 10.1016/j.aca.2018.09.011

    33. [33]

      Wu Y, Zou L, Lei S. Highly Sensitive Electrochemical Thrombin Aptasensor Based on Peptide-Enhanced Electrocatalysis of Hemin/G-Quadruplex and Nanocomposite as Nanocarrier[J]. Biosens Bioelectron, 2017,97:317-324. doi: 10.1016/j.bios.2017.06.023

    34. [34]

      Huang R, He L, Xia Y. A Sensitive Aptasensor Based on a Hemin/G-Quadruplex-assisted Signal Amplification Strategy for Electrochemical Detection of Gastric Cancer Exosomes[J]. Small, 2019,15(19)1900735. doi: 10.1002/smll.201900735

    35. [35]

      Chen D, Sun D, Wang Z. A DNA Nanostructured Aptasensor for the Sensitive Electrochemical Detection of HepG2 Cells Based on Multibranched Hybridization Chain Reaction Amplification Strategy[J]. Biosens Bioelectron, 2018,117:416-421. doi: 10.1016/j.bios.2018.06.041

    36. [36]

      Gao F, Fan T, Wu J. Proximity Hybridization Triggered Hemin/G-Quadruplex Formation for Construction a Label-Free and Signal-On Electrochemical DNA Sensor[J]. Biosens Bioelectron, 2017,96:62-67. doi: 10.1016/j.bios.2017.04.024

    37. [37]

      Kim K, Park P, Lee J H. Cost-Effective Monitoring of microRNA-205 Applied as a Biomarker Using G-Quadruplex DNAzyme and 1, 1'-Oxalyldiimidazole Chemiluminescence[J]. J Pharm Biomed Anal, 2019,175112780. doi: 10.1016/j.jpba.2019.112780

    38. [38]

      Sun Y, Lin Y, Han R. A Chemiluminescence Biosensor for Lysozyme Detection Based on Aptamers and Hemin/G-Quadruplex DNAzyme Modified Sandwich-Rod Carbon Fiber Composite[J]. Talanta, 2019,200:57-66. doi: 10.1016/j.talanta.2019.03.007

    39. [39]

      Shekari Z, Zare H R, Falahati A. Electrochemical Sandwich Aptasensor for the Carcinoembryonic Antigen Using Graphene Quantum Dots, Gold Nanoparticles and Nitrogen Doped Graphene Modified Electrode and Exploiting the Peroxidase-Mimicking Activity of a G-Quadruplex DNAzyme[J]. Microchim Acta, 2019,186(8)530. doi: 10.1007/s00604-019-3572-9

    40. [40]

      Lin K L, Yang T, Zou H Y. Graphitic C3N4 Nanosheet and Hemin/G-Quadruplex DNAzyme-Based Label-Free Chemiluminescence Aptasensing for Biomarkers[J]. Talanta, 2019,192:400-406. doi: 10.1016/j.talanta.2018.09.066

    41. [41]

      Liu X, Yang F, Li D. A Ternary Probe for Target-Triggered Autonomous Multi-branch Rolling Circle Amplification for Highly Sensitive Colorimetric Sensing of Platelet-Derived Growth Factor BB[J]. Sens Actuators B, 2020,305127405. doi: 10.1016/j.snb.2019.127405

    42. [42]

      Bao T, Wen M Q, Wen W. Ultrasensitive Electrochemical Biosensor of Interferon-Gamma Based on Gold Nanoclusters-Graphene@Zeolitic Imidazolate Framework-8 and Layered-Branched Hybridization Chain Reaction[J]. Sens Actuators B, 2019,296(9):126606.1-126606.8.  

    43. [43]

      Swaminathan B, Feng P. Rapid Detection of Food-Borne Pathogenic Bacteria[J]. Annu Rev Microbiol, 1994,48(1):401-426. doi: 10.1146/annurev.mi.48.100194.002153

    44. [44]

      Bruno J G, Kiel J L. Use of Magnetic Beads in Selection and Detection of Biotoxin Aptamers by Electrochemiluminescence and Enzymatic Methods[J]. BioTechniques, 2002,32(1):178-183. doi: 10.2144/02321dd04

    45. [45]

      Liu Z, Yao C, Wang Y. A G-Quadruplex DNAzyme-based LAMP Biosensing Platform for a Novel Colorimetric Detection of Listeria monocytogenes[J]. Anal Methods, 2018,10(8):848-854. doi: 10.1039/C7AY02908J

    46. [46]

      Kim S U, Batule B S, Mun H. Ultrasensitive Colorimetric Detection of Salmonella enterica Typhimurium on Lettuce Leaves by HRPzyme-Integrated Polymerase Chain Reaction[J]. Food Control, 2018,84:522-528. doi: 10.1016/j.foodcont.2017.09.010

    47. [47]

      Xu J, Guo J, Maina S W. An Aptasensor for Staphylococcus Aureus Based on Nicking Enzyme Amplification Reaction and Rolling Circle Amplification[J]. Anal Biochem, 2018,549:136-142. doi: 10.1016/j.ab.2018.03.013

    48. [48]

      Shen P, Li W, Liu Y. High-Throughput Low-Background G-Quadruplex Aptamer Chemiluminescence Assay for Ochratoxin a Using a Single Photonic Crystal Microsphere[J]. Anal Chem, 2017,89(21):11862-11868. doi: 10.1021/acs.analchem.7b03592

    49. [49]

      Wu J, Zeng L, Li N. A Wash-Free and Label-Free Colorimetric Biosensor for Naked-Eye Detection of Aflatoxin B1 Using G-Quadruplex as the Signal Reporter[J]. Food Chem, 2019,298125034. doi: 10.1016/j.foodchem.2019.125034

    50. [50]

      Miao M, Tian J, Luo Y. Terminal Deoxynucleotidyl Transferase-Induced DNAzyme Nanowire Sensor for Colorimetric Detection of Lipopolysaccharides[J]. Sens Actuators B, 2018,256:790-796. doi: 10.1016/j.snb.2017.10.004

    51. [51]

      Shang Q P, Su Y, Liang Y. Ultrasensitive Cloth-based Microfluidic Chemiluminescence Detection of Listeria monocytogenes hlyA Gene by Hemin/G-Quadruplex DNAzyme and Hybridization Chain Reaction Signal Amplification[J]. Anal Bioanal Chem, 2020,412(15):3787-3797. doi: 10.1007/s00216-020-02633-5

    52. [52]

      Gumpu M B, Sethuraman S, Krishnan U M. A Review on Detection of Heavy Metal Ions in Water an Electrochemical Approach[J]. Sens Actuators B, 2015,213:515-533. doi: 10.1016/j.snb.2015.02.122

    53. [53]

      Qing M, Yuan Y, Cai W. An Ultrasensitive Electrochemical Biosensor Based on Multifunctional Hemin/G-Quadruplex Nanowires Simultaneously Served as Bienzyme and Direct Electron Mediator for Detection of Lead Ion[J]. Sen Actuators B, 2018,263:469-475. doi: 10.1016/j.snb.2018.02.109

    54. [54]

      Ji R Y, Niu W C, Chen S. Target-Inspired Pb2+-Dependent DNAzyme for Ultrasensitive Electrochemical Sensor Based on MoS2-AuPt Nanocomposites and Hemin/G-Quadruplex DNAzyme as Signal Amplifier[J]. Biosens Bioelectron, 2019,144111560. doi: 10.1016/j.bios.2019.111560

    55. [55]

      Yun W, Hu Y, Liu Q. Thymine-Hg2+-Thymine Coordination Chemistry Induced Entropy Driven Catalytic Reaction to form Hemin/G-Quadruplex-HRP-Mimicking DNAzyme for Colorimetric and Visual Determination of Hg2+[J]. Spectrochim Acta Part A, 2019,222117228. doi: 10.1016/j.saa.2019.117228

    56. [56]

      Zhou D H, Wu W, Li Q. A Label-Free and Enzyme-Free Aptasensor for Visual Cd2+ Detection Based on Split DNAzyme Fragments[J]. Anal Methods, 2019,11(28):3546-3551. doi: 10.1039/C9AY00822E

    57. [57]

      Zhu L J, Li G S, Shao X L. A Colorimetric Zinc(Ⅱ) Assay Based on the Use of Hairpin DNAzyme Recycling and a Hemin/G-Quadruplex Lighted DNA Nanoladder[J]. Microchim Acta, 2020,187(1):1-9. doi: 10.1007/s00604-019-3921-8

    58. [58]

      Ge C, Luo Q, Wang D. Colorimetric Detection of Copper(Ⅱ) Ion Using Click Chemistry and Hemin/G-Quadruplex Horseradish Peroxidase-Mimicking DNAzyme[J]. Anal Chem, 2014,86(13):6387-6392. doi: 10.1021/ac501739a

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    13. [13]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    14. [14]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    15. [15]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    18. [18]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    19. [19]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    20. [20]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

Metrics
  • PDF Downloads(171)
  • Abstract views(4413)
  • HTML views(2363)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return