Citation: WANG Qiushi, HE Junhui. Synthesis of Magnetic CuS Composite Nanomaterial and Its Specific Adsorption of Hg(Ⅱ) in Water[J]. Chinese Journal of Applied Chemistry, ;2020, 37(11): 1316-1323. doi: 10.11944/j.issn.1000-0518.2020.11.200119 shu

Synthesis of Magnetic CuS Composite Nanomaterial and Its Specific Adsorption of Hg(Ⅱ) in Water

  • Corresponding author: HE Junhui, jhhe@mail.ipc.ac.cn
  • Received Date: 24 April 2020
    Revised Date: 19 May 2020
    Accepted Date: 12 June 2020

    Fund Project: Supported by the National Key Research and Development Program of China(No.2017YFA0207102), and the National Natural Science Foundation of China(No.91963104)the National Natural Science Foundation of China 91963104the National Key Research and Development Program of China 2017YFA0207102

Figures(8)

  • Design and synthesis of adsorption/enrichment materials with rapid adsorption rate and good adsorption selectivity are significant for high-efficiency uptake and precise detection of Hg2+ ions. In this work, a magnetic CuS composite nanomaterial (Fe3O4@SiO2@CuS) was successfully synthesized by a facile and economic strategy, and a series of adsorption experiments was carried out to investigate the adsorption performance of core-shell structured Fe3O4@SiO2@CuS towards Hg2+ ions in aqueous solution. The results show that Fe3O4@SiO2@CuS exhibits fast adsorption kinetics and excellent adsorption capacity. It also displays a superior selective capture of Hg2+ in the presence of other co-existing metal ions, and the removal efficiency of Hg2+ is as high as 99.9%. In addition, Fe3O4@SiO2@CuS can be separated easily and fastly from samples under an external magnetic field, which is attributed to its magnetic property. These results demonstrate that magnetic metal sulfide composite nanomaterials have great application prospects in the areas of adsorption, enrichment and detection.
  • 加载中
    1. [1]

      Hadavifar M, Bahramifar N, Younesi H. Adsorption of Mercury Ions from Synthetic and Real Wastewater Aqueous Solution by Functionalized Multi-Walled Carbon Nanotube with both Amino and Thiolated Groups[J]. Chem Eng J, 2014,237:217-228. doi: 10.1016/j.cej.2013.10.014

    2. [2]

      Jeong H Y, Klaue B, Blum J D. Sorption of Mercuric Ion by Synthetic Nanocrystalline Mackinawite (FeS)[J]. Environ Sci Technol, 2007,41(22):7699-7705. doi: 10.1021/es070289l

    3. [3]

      Peng C, He M, Chen B. Magnetic Sulfur-Doped Porous Carbon for Preconcentration of Trace Mercury in Environmental Water Prior to ICP-MS Detection[J]. Analyst, 2017,142(23):4570-4579. doi: 10.1039/C7AN01195D

    4. [4]

      Klímová K, Pumera M, Luxa J. Graphene Oxide Sorption Capacity Towards Elements over the Whole Periodic Table:A Comparative Study[J]. J Phys Chem C, 2016,120(42):24203-24212. doi: 10.1021/acs.jpcc.6b08088

    5. [5]

      Ma L, Islam S M, Xiao C. Rapid Simultaneous Removal of Toxic Anions[HSeO3]-, [SeO3]2-, and[SeO4]2-, and Metals Hg2+, Cu2+, and Cd2+ by MoS42- Intercalated Layered Double Hydroxide[J]. J Am Chem Soc, 2017,139(36):12745-12757. doi: 10.1021/jacs.7b07123

    6. [6]

      Halder S, Mondal J, Ortega-Castro J. A Ni-Based MOF for Selective Detection and Removal of Hg2+ in Aqueous Medium:A Facile Strategy[J]. Dalton Trans, 2017,46(6):1943-1950. doi: 10.1039/C6DT04722J

    7. [7]

      Huang L, He M, Chen B. Facile Fabrication of N-Doped Magnetic Porous Carbon for Highly Efficient Mercury Removal[J]. ACS Sustainable Chem Eng, 2018,6(8):10191-10199. doi: 10.1021/acssuschemeng.8b01498

    8. [8]

      Li J, Liu Y, Ai Y. Combined Experimental and Theoretical Investigation on Selective Removal of Mercury Ions by Metal Organic Frameworks Modified with Thiol Groups[J]. Chem Eng J, 2018,354:790-801. doi: 10.1016/j.cej.2018.08.041

    9. [9]

      Zhang L, Wang J, Du T. NH2-MIL-53(Al) Metal-Organic Framework as the Smart Platform for Simultaneous High-Performance Detection and Removal of Hg2+[J]. Inorg Chem, 2019,58(19):12573-12581. doi: 10.1021/acs.inorgchem.9b01242

    10. [10]

      Yap P L, Kabiri S, Tran D N H. Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury[J]. ACS Appl Mater Interfaces, 2019,11(6):6350-6362. doi: 10.1021/acsami.8b17131

    11. [11]

      Bandaru N M, Reta N, Dalal H. Enhanced Adsorption of Mercury Ions on Thiol Derivatized Single Wall Carbon Nanotubes[J]. J Hazard Mater, 2013,261:534-541. doi: 10.1016/j.jhazmat.2013.07.076

    12. [12]

      Ram B, Chauhan G S. New Spherical Nanocellulose and Thiol-Based Adsorbent for Rapid and Selective Removal of Mercuric Ions[J]. Chem Eng J, 2018,331:587-596. doi: 10.1016/j.cej.2017.08.128

    13. [13]

      Ke F, Qiu L G, Yuan Y P. Thiol-Functionalization of Metal-Organic Framework by a Facile Coordination-Based Postsynthetic Strategy and Enhanced Removal of Hg2+ from Water[J]. J Hazard Mater, 2011,196:36-43. doi: 10.1016/j.jhazmat.2011.08.069

    14. [14]

      Ai K, Ruan C, Shen M. MoS2 Nanosheets with Widened Interlayer Spacing for High-Efficiency Removal of Mercury in Aquatic Systems[J]. Adv Funct Mater, 2016,26(30):5542-5549. doi: 10.1002/adfm.201601338

    15. [15]

      Jia F, Wang Q, Wu J. Two-Dimensional Molybdenum Disulfide as a Superb Adsorbent for Removing Hg2+ from Water[J]. ACS Sustainable Chem Eng, 2017,5(8):7410-7419. doi: 10.1021/acssuschemeng.7b01880

    16. [16]

      Song Y, Lu M, Huang B. Decoration of Defective MoS2 Nanosheets with Fe3O4 Nanoparticles as Superior Magnetic Adsorbent for Highly Selective and Efficient Mercury Ions (Hg2+) Removal[J]. J Alloys Compd, 2018,737:113-121. doi: 10.1016/j.jallcom.2017.12.087

    17. [17]

      Hu M, Tian H, He J. Unprecedented Selectivity and Rapid Uptake of CuS Nanostructures toward Hg(Ⅱ) Ions[J]. ACS Appl Mater Interfaces, 2019,11(21):19200-19206. doi: 10.1021/acsami.9b04641

    18. [18]

      Zhu M, Zhang W, Li Y. Multishell Structured Magnetic Nanocomposites Carrying a Copolymer of Pyrrole-Thiophene for Highly Selective Au(Ⅲ) Recovery[J]. J Mater Chem A, 2016,4(48):19060-19069. doi: 10.1039/C6TA06541D

    19. [19]

      Stöber W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. J Colloid Interface Sci, 1968,26(1):62-69. doi: 10.1016/0021-9797(68)90272-5

    20. [20]

      ZHANG Xinyu, SUN Xiaomin, YUAN Guofu. Primary Analysis of Water pH and Salinity Monitoring Data on Chinese Ecosystem Research Network(CERN)[J]. Adv Earth Sci, 2009,24(9):1042-1050.  

    21. [21]

      Powell K J, Brown P L, Byrne R H. Chemical Speciation of Environmentally Significant Heavy Metals with Inorganic Ligands.Part 1:The Hg2+-Cl-, OH-, CO32-, SO42-, and PO43- Aqueous Systems (IUPAC Technical Report)[J]. Pure Appl Chem, 2005,77(4):739-800. doi: 10.1351/pac200577040739

    22. [22]

      Dubale A A, Tamirat A G, Chen H M. Highly Stable CuS and CuS-Pt Catalyzed Cu2O/CuO Heterostructure as Efficient Photocathode for Hydrogen Evolution Reaction[J]. J Mater Chem A, 2015,4(6):2205-2216.  

    23. [23]

      Leloup J, Ruaudelteixier A, Barraud A. XPS Study of Copper Sulfides Inserted into a Langmuir-Blodgett Matrix[J]. Appl Surf Sci, 1993,68(2):231-242. doi: 10.1016/0169-4332(93)90127-W

    24. [24]

      Pearson R G. Hard and Soft Acids and Bases[J]. J Am Chem Soc, 1963,85(22):3533-3539. doi: 10.1021/ja00905a001

    25. [25]

      Behra P, Bonnissel-Gissinger P, Alnot M. XPS and XAS Study of the Sorption of Hg(Ⅱ) onto Pyrite[J]. Langmuir, 2001,30(1):269-272.  

    26. [26]

      Tang J, Ni S, Chen Q. CuS@Cu Freestanding Electrode via Electrochemical Corrosion for High Performance Li-Ion Batteries[J]. Mater Lett, 2017,201:13-17. doi: 10.1016/j.matlet.2017.04.120

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    7. [7]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    8. [8]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

Metrics
  • PDF Downloads(3)
  • Abstract views(779)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return