Citation: LIU Qiang, ZHAO Zhenbo, ZHANG Chao, ZHAO Fengyu. Catalytic Conversion of γ-Valerolactone to 1, 4-Pentanediol on CuZn/Al2O3 Catalyst[J]. Chinese Journal of Applied Chemistry, ;2020, 37(11): 1285-1292. doi: 10.11944/j.issn.1000-0518.2020.11.200109 shu

Catalytic Conversion of γ-Valerolactone to 1, 4-Pentanediol on CuZn/Al2O3 Catalyst

  • Corresponding author: ZHAO Zhenbo, 1710229261@qq.com ZHAO Fengyu, zhaofy@ciac.ac.cn
  • Received Date: 15 April 2020
    Revised Date: 30 April 2020
    Accepted Date: 9 June 2020

Figures(5)

  • Biomass conversion is one of the most effective ways for alleviating the energy and environmental crisis. A series of CuZn/Al2O3 catalysts was prepared by co-precipitation method and the structure and properties of the catalysts obtained were characterized by several techniques such as inductively coupled plasma (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM), and CO2-temperature programmed desorption (TPD). We focused our attention on the effects of reduction temperature on the catalytic performances of CuZn/Al2O3 catalysts in γ-valerolactone hydrogenation. It is found that reduction of temperature significantly influences the activity and selectivity of CuZn/Al2O3 catalysts, that is, the larger reduction temperature benefits for the formation of 1, 4-pentanediol, and a high selectivity of 98% is achieved over the catalyst at 440℃, while it is only 71% on the catalyst reduced at 200℃. Based on the structure analysis of the catalyst, it is concluded that the high reduction temperature can promote the reduction of ZnO and generate new surface active sites and vary the surface basic-acid properties, thus result in the improvement of 1, 4-pentanediol selectivity.
  • 加载中
    1. [1]

      Mosier N, Wywan C, Dale B. Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass[J]. Bioresour Technol, 2005,96(6):673-686. doi: 10.1016/j.biortech.2004.06.025

    2. [2]

      LIN Lu, HE Beihai, SUN Runcang. High Value Chemicals from Lignocellulosic Biomass[J]. Prog Chem, 2007,19(Z2):1206-1216.  

    3. [3]

      YU Qiang, ZHUANG Xinshu, YUAN Zhenhong. Research Progress on Fuel and Chemicals Production from Lignocellulose Biomass[J]. Chem Ind Eng Proc, 2012,31(4):784-791.  

    4. [4]

      Girisuta B, Janssen L P B M, Heeres H J. Green Chemicals:A Kinetic Study on the Conversion of Glucose to Levulinic Acid[J]. Chem Eng Res Des, 2006,84(5):339-349. doi: 10.1205/cherd05038

    5. [5]

      Rackemann D W, Doherty W O. The Conversion of Lignocellulosics to Levulinic Acid[J]. Biofuel Bioprod Biorefin, 2011,5(2):198-214. doi: 10.1002/bbb.267

    6. [6]

      Banerjee B, Singuru R, Kundu S K. Towards Rational Design of Core-Shell Catalytic Nanoreactor with High Performance Catalytic Hydrogenation of Levulinic Acid[J]. Catal Sci Technol, 2016,6(13):5102-5115. doi: 10.1039/C6CY00169F

    7. [7]

      Feng H, Li X, Qian H. Efficient and Sustainable Hydrogenation of Levulinic-acid to gamma-Valerolactone in Aqueous Solution over Acid-resistant CePO4/Co2P Catalysts[J]. Green Chem, 2019,21(7):1743-1756. doi: 10.1039/C9GC00482C

    8. [8]

      Li W, Xie J, Lin H. Highly Efficient Hydrogenation of Biomass-Derived Levulinic Acid to γ-Valerolactone Catalyzed by Iridium Pincer Complexes[J]. Green Chem, 2012,14(9):2388-2390. doi: 10.1039/c2gc35650c

    9. [9]

      Mamun O, Saleheen M, Bond J Q. Investigation of Solvent Effects in the Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Ru Catalysts[J]. J Catal, 2019,379:164-179. doi: 10.1016/j.jcat.2019.09.026

    10. [10]

      Pinto B P, Fortuna A L L, Cardoso C P. Hydrogenation of Levulinic Acid (LA) to γ-Valerolactone (GVL) over Ni-Mo/C Catalysts and Water-Soluble Solvent Systems[J]. Catal Lett, 2017,147(3):751-757. doi: 10.1007/s10562-017-1977-9

    11. [11]

      Upare P P, Lee J M, Hwang D W. Selective Hydrogenation of Levulinic Acid to γ-Valerolactone over Carbon-Supported Noble Metal Catalysts[J]. J Ind Eng Chem, 2011,17(2):287-292. doi: 10.1016/j.jiec.2011.02.025

    12. [12]

      Ahn Y C, Han J. Catalytic Production of 1, 4-Pentanediol from Corn Stover[J]. Bioresour Technol, 2017,245(Pt A):442-448.

    13. [13]

      Alonso D M, Wettstein S G, Dumesic J A. Gamma-Valerolactone, A Austainable Platform Molecule Derived from Lignocellulosic Biomass[J]. Green Chem, 2013,15(3):584-595. doi: 10.1039/c3gc37065h

    14. [14]

      Corbel-demailly L, Ly B K, Minh D P. Heterogeneous Catalytic Hydrogenation of Biobased Levulinic and Succinic Acids in Aqueous Solutions[J]. ChemSusChem, 2013,6(12):2388-2395. doi: 10.1002/cssc.201300608

    15. [15]

      Mehdi H, Fabos V, Tuba R. Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass:From Sucrose to Levulinic Acid, γ-Valerolactone, 1, 4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes[J]. Top Catal, 2008,48(1/2/3/4):49-54.  

    16. [16]

      Pagliaro M, Ciriminna R, Kimura H. From Glycerol to Value-Added Products[J]. Angew Chem Int Ed, 2007,46(24):4434-4340. doi: 10.1002/anie.200604694

    17. [17]

      Climent M J, Corma A, Iborra S. Conversion of Biomass Platform Molecules into Fuel Additives and Liquid Hydrocarbon Fuels[J]. Green Chem, 2014,16(2):516-547. doi: 10.1039/c3gc41492b

    18. [18]

      Lange J P, Price R, Ayoub P M. Valeric Biofuels:A Platform of Cellulosic Transportation Fuels[J]. Angew Chem Int Ed, 2010,49(26):4479-4483. doi: 10.1002/anie.201000655

    19. [19]

      Obregon I, Gandarias I, Al-shaal M G. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid[J]. ChemSusChem, 2016,9(17):2488-2495. doi: 10.1002/cssc.201600751

    20. [20]

      Pace V, Hoyos D P, Castoldi L. 2-Methyltetrahydrofuran (2-MeTHF):A Biomass-Derived Solvent with Broad Application in Organic Chemistry[J]. ChemSusChem, 2012,5(8):1369-1379. doi: 10.1002/cssc.201100780

    21. [21]

      Sun D, Saito T, Yamada Y. Hydrogenation of γ-Valerolactone to 1, 4-Pentanediol in a Continuous Flow Reactor[J]. Appl Catal A, 2017,542:289-295. doi: 10.1016/j.apcata.2017.05.034

    22. [22]

      Zhai X J, Li C, Di X. Preparation of Cu/MgO Catalysts for γ-Valerolactone Hydrogenation to 1, 4-Pentanediol by MOCVD[J]. J Fuel Chem Technol, 2017,45(5):537-546. doi: 10.1016/S1872-5813(17)30028-2

    23. [23]

      Du X, Bi Q, Liu Y. Tunable Copper-Catalyzed Chemoselective Hydrogenolysis of Biomass-Derived γ-Valerolactone into 1, 4-Pentanediol or 2-Methyltetrahydrofuran[J]. Green Chem, 2012,14(4):935-939. doi: 10.1039/c2gc16599f

    24. [24]

      Obregon I, Gandarias I, Ocio A. Structure-Activity Relationships of Ni-Cu/Al2O3 Catalysts for γ-Valerolactone Conversion to 2-Methyltetrahydrofuran[J]. Appl Catal B, 2017,210:328-341. doi: 10.1016/j.apcatb.2017.04.006

    25. [25]

      Li M, Li G, Li N. Aqueous Phase Hydrogenation of Levulinic Acid to 1, 4-Pentanediol[J]. Chem Commun, 2014,50(12):1414-1416. doi: 10.1039/c3cc48236g

    26. [26]

      Wu J, Gao G, Sun P. Synergetic Catalysis of Bimetallic CuCo Nanocomposites for Selective Hydrogenation of Bioderived Esters[J]. ACS Catal, 2017,7(11):7890-7901. doi: 10.1021/acscatal.7b02837

    27. [27]

      Xie Z, Chen B, Wu H. Highly Efficient Hydrogenation of Levulinic Acid into 2-Methyltetrahydrofuran over Ni-Cu/Al2O3-ZrO2 Bifunctional Catalysts[J]. Green Chem, 2019,21(3):606-613. doi: 10.1039/C8GC02914H

    28. [28]

      Xu Q, Li X, Pan T. Supported Copper Catalysts for Highly Efficient Hydrogenation of Biomass-Derived Levulinic Acid and γ-Valerolactone[J]. Green Chem, 2016,18(5):1287-1294. doi: 10.1039/C5GC01454A

    29. [29]

      Kanai Y, Watanabe T, Fujitani T. Evidence for the Mmigration of ZnOx in a Cu/ZnO Methanol Synthesis Catalyst[J]. Catal Lett, 1994,27(1/2/3/4):67-78.

    30. [30]

      Kuld S, Conradsen C, Moses P G. Quantification of Zinc Atoms in a Surface Alloy on Copper in an Industrial-Type Methanol Synthesis Catalyst[J]. Angew Chem Int Ed, 2014,53(23):5941-5945. doi: 10.1002/anie.201311073

    31. [31]

      Kuld S, Thorhauge M, Falsig H. Quantifying the Promotion of Cu Catalysts by ZnO for Mmethanol Synthesis[J]. Science, 2016,352(6288):969-974. doi: 10.1126/science.aaf0718

    32. [32]

      Tisseraud C, Comminges C, Belin T. The Cu-ZnO Synergy in Methanol Synthesis from CO2, Part 2:Origin of the Methanol and CO Selectivities Explained by Experimental Studies and a Sphere Contact Quantification Model in Randomly Packed Binary Mixtures on Cu-ZnO Coprecipitate Catalysts[J]. J Catal, 2015,330:533-544. doi: 10.1016/j.jcat.2015.04.035

    33. [33]

      Valant A L, Comminges C, Tisseraud C. The Cu-ZnO Synergy in Methanol Synthesis from CO2, Part 1:Origin of Active Site Explained by Experimental Studies and a Sphere Contact Quantification Model on Cu+ZnO Mechanical Mixtures[J]. J Catal, 2015,324:41-49. doi: 10.1016/j.jcat.2015.01.021

  • 加载中
    1. [1]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    2. [2]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    4. [4]

      Xiqing Liang Tian Zhao Jiawei Li Haohui Tan Hai Chen Liyan Zeng . Pentaerythritol’s Journey of Making Friends. University Chemistry, 2025, 40(10): 175-185. doi: 10.12461/PKU.DXHX202412009

    5. [5]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    6. [6]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    7. [7]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    14. [14]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(1)
  • Abstract views(872)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return