Catalytic Conversion of γ-Valerolactone to 1, 4-Pentanediol on CuZn/Al2O3 Catalyst
- Corresponding author: ZHAO Zhenbo, 1710229261@qq.com ZHAO Fengyu, zhaofy@ciac.ac.cn
Citation:
LIU Qiang, ZHAO Zhenbo, ZHANG Chao, ZHAO Fengyu. Catalytic Conversion of γ-Valerolactone to 1, 4-Pentanediol on CuZn/Al2O3 Catalyst[J]. Chinese Journal of Applied Chemistry,
;2020, 37(11): 1285-1292.
doi:
10.11944/j.issn.1000-0518.2020.11.200109
Mosier N, Wywan C, Dale B. Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass[J]. Bioresour Technol, 2005,96(6):673-686. doi: 10.1016/j.biortech.2004.06.025
LIN Lu, HE Beihai, SUN Runcang. High Value Chemicals from Lignocellulosic Biomass[J]. Prog Chem, 2007,19(Z2):1206-1216.
YU Qiang, ZHUANG Xinshu, YUAN Zhenhong. Research Progress on Fuel and Chemicals Production from Lignocellulose Biomass[J]. Chem Ind Eng Proc, 2012,31(4):784-791.
Girisuta B, Janssen L P B M, Heeres H J. Green Chemicals:A Kinetic Study on the Conversion of Glucose to Levulinic Acid[J]. Chem Eng Res Des, 2006,84(5):339-349. doi: 10.1205/cherd05038
Rackemann D W, Doherty W O. The Conversion of Lignocellulosics to Levulinic Acid[J]. Biofuel Bioprod Biorefin, 2011,5(2):198-214. doi: 10.1002/bbb.267
Banerjee B, Singuru R, Kundu S K. Towards Rational Design of Core-Shell Catalytic Nanoreactor with High Performance Catalytic Hydrogenation of Levulinic Acid[J]. Catal Sci Technol, 2016,6(13):5102-5115. doi: 10.1039/C6CY00169F
Feng H, Li X, Qian H. Efficient and Sustainable Hydrogenation of Levulinic-acid to gamma-Valerolactone in Aqueous Solution over Acid-resistant CePO4/Co2P Catalysts[J]. Green Chem, 2019,21(7):1743-1756. doi: 10.1039/C9GC00482C
Li W, Xie J, Lin H. Highly Efficient Hydrogenation of Biomass-Derived Levulinic Acid to γ-Valerolactone Catalyzed by Iridium Pincer Complexes[J]. Green Chem, 2012,14(9):2388-2390. doi: 10.1039/c2gc35650c
Mamun O, Saleheen M, Bond J Q. Investigation of Solvent Effects in the Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Ru Catalysts[J]. J Catal, 2019,379:164-179. doi: 10.1016/j.jcat.2019.09.026
Pinto B P, Fortuna A L L, Cardoso C P. Hydrogenation of Levulinic Acid (LA) to γ-Valerolactone (GVL) over Ni-Mo/C Catalysts and Water-Soluble Solvent Systems[J]. Catal Lett, 2017,147(3):751-757. doi: 10.1007/s10562-017-1977-9
Upare P P, Lee J M, Hwang D W. Selective Hydrogenation of Levulinic Acid to γ-Valerolactone over Carbon-Supported Noble Metal Catalysts[J]. J Ind Eng Chem, 2011,17(2):287-292. doi: 10.1016/j.jiec.2011.02.025
Ahn Y C, Han J. Catalytic Production of 1, 4-Pentanediol from Corn Stover[J]. Bioresour Technol, 2017,245(Pt A):442-448.
Alonso D M, Wettstein S G, Dumesic J A. Gamma-Valerolactone, A Austainable Platform Molecule Derived from Lignocellulosic Biomass[J]. Green Chem, 2013,15(3):584-595. doi: 10.1039/c3gc37065h
Corbel-demailly L, Ly B K, Minh D P. Heterogeneous Catalytic Hydrogenation of Biobased Levulinic and Succinic Acids in Aqueous Solutions[J]. ChemSusChem, 2013,6(12):2388-2395. doi: 10.1002/cssc.201300608
Mehdi H, Fabos V, Tuba R. Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass:From Sucrose to Levulinic Acid, γ-Valerolactone, 1, 4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes[J]. Top Catal, 2008,48(1/2/3/4):49-54.
Pagliaro M, Ciriminna R, Kimura H. From Glycerol to Value-Added Products[J]. Angew Chem Int Ed, 2007,46(24):4434-4340. doi: 10.1002/anie.200604694
Climent M J, Corma A, Iborra S. Conversion of Biomass Platform Molecules into Fuel Additives and Liquid Hydrocarbon Fuels[J]. Green Chem, 2014,16(2):516-547. doi: 10.1039/c3gc41492b
Lange J P, Price R, Ayoub P M. Valeric Biofuels:A Platform of Cellulosic Transportation Fuels[J]. Angew Chem Int Ed, 2010,49(26):4479-4483. doi: 10.1002/anie.201000655
Obregon I, Gandarias I, Al-shaal M G. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid[J]. ChemSusChem, 2016,9(17):2488-2495. doi: 10.1002/cssc.201600751
Pace V, Hoyos D P, Castoldi L. 2-Methyltetrahydrofuran (2-MeTHF):A Biomass-Derived Solvent with Broad Application in Organic Chemistry[J]. ChemSusChem, 2012,5(8):1369-1379. doi: 10.1002/cssc.201100780
Sun D, Saito T, Yamada Y. Hydrogenation of γ-Valerolactone to 1, 4-Pentanediol in a Continuous Flow Reactor[J]. Appl Catal A, 2017,542:289-295. doi: 10.1016/j.apcata.2017.05.034
Zhai X J, Li C, Di X. Preparation of Cu/MgO Catalysts for γ-Valerolactone Hydrogenation to 1, 4-Pentanediol by MOCVD[J]. J Fuel Chem Technol, 2017,45(5):537-546. doi: 10.1016/S1872-5813(17)30028-2
Du X, Bi Q, Liu Y. Tunable Copper-Catalyzed Chemoselective Hydrogenolysis of Biomass-Derived γ-Valerolactone into 1, 4-Pentanediol or 2-Methyltetrahydrofuran[J]. Green Chem, 2012,14(4):935-939. doi: 10.1039/c2gc16599f
Obregon I, Gandarias I, Ocio A. Structure-Activity Relationships of Ni-Cu/Al2O3 Catalysts for γ-Valerolactone Conversion to 2-Methyltetrahydrofuran[J]. Appl Catal B, 2017,210:328-341. doi: 10.1016/j.apcatb.2017.04.006
Li M, Li G, Li N. Aqueous Phase Hydrogenation of Levulinic Acid to 1, 4-Pentanediol[J]. Chem Commun, 2014,50(12):1414-1416. doi: 10.1039/c3cc48236g
Wu J, Gao G, Sun P. Synergetic Catalysis of Bimetallic CuCo Nanocomposites for Selective Hydrogenation of Bioderived Esters[J]. ACS Catal, 2017,7(11):7890-7901. doi: 10.1021/acscatal.7b02837
Xie Z, Chen B, Wu H. Highly Efficient Hydrogenation of Levulinic Acid into 2-Methyltetrahydrofuran over Ni-Cu/Al2O3-ZrO2 Bifunctional Catalysts[J]. Green Chem, 2019,21(3):606-613. doi: 10.1039/C8GC02914H
Xu Q, Li X, Pan T. Supported Copper Catalysts for Highly Efficient Hydrogenation of Biomass-Derived Levulinic Acid and γ-Valerolactone[J]. Green Chem, 2016,18(5):1287-1294. doi: 10.1039/C5GC01454A
Kanai Y, Watanabe T, Fujitani T. Evidence for the Mmigration of ZnOx in a Cu/ZnO Methanol Synthesis Catalyst[J]. Catal Lett, 1994,27(1/2/3/4):67-78.
Kuld S, Conradsen C, Moses P G. Quantification of Zinc Atoms in a Surface Alloy on Copper in an Industrial-Type Methanol Synthesis Catalyst[J]. Angew Chem Int Ed, 2014,53(23):5941-5945. doi: 10.1002/anie.201311073
Kuld S, Thorhauge M, Falsig H. Quantifying the Promotion of Cu Catalysts by ZnO for Mmethanol Synthesis[J]. Science, 2016,352(6288):969-974. doi: 10.1126/science.aaf0718
Tisseraud C, Comminges C, Belin T. The Cu-ZnO Synergy in Methanol Synthesis from CO2, Part 2:Origin of the Methanol and CO Selectivities Explained by Experimental Studies and a Sphere Contact Quantification Model in Randomly Packed Binary Mixtures on Cu-ZnO Coprecipitate Catalysts[J]. J Catal, 2015,330:533-544. doi: 10.1016/j.jcat.2015.04.035
Valant A L, Comminges C, Tisseraud C. The Cu-ZnO Synergy in Methanol Synthesis from CO2, Part 1:Origin of Active Site Explained by Experimental Studies and a Sphere Contact Quantification Model on Cu+ZnO Mechanical Mixtures[J]. J Catal, 2015,324:41-49. doi: 10.1016/j.jcat.2015.01.021
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044