Citation: CAI Min, WU Chunyan, XIE Yishun, BAN Gui, LAI Feiyan, HUANG Xiaoying, ZHANG Xiaohui. Effects of Ethyl Orthosilicate on the Electrochemical Performance of High-Voltage Lithium Nickel Manganese Oxide-Based Full-Cell[J]. Chinese Journal of Applied Chemistry, ;2020, 37(11): 1301-1308. doi: 10.11944/j.issn.1000-0518.2020.11.200099 shu

Effects of Ethyl Orthosilicate on the Electrochemical Performance of High-Voltage Lithium Nickel Manganese Oxide-Based Full-Cell

  • Corresponding author: WU Chunyan, wuchunyan117@163.com LAI Feiyan, fylai112@163.com
  • Received Date: 6 April 2020
    Revised Date: 25 May 2020
    Accepted Date: 29 June 2020

    Fund Project: the National Natural Science Foundation of China 51762006the National Natural Science Foundation of China 51964013Supported by the National Natural Science Foundation of China (No.51964013, No. 51762006), the Guangxi University Middle-aged and Young Teachers′ Basic Research Ability Improvement Project (No.2019KY0709), the Hezhou Innovation-Driven Development Project (No.Hekechuang ZX1907001) and the Guangxi University Student Innovation and Entrepreneurship Training Program (No.201911838065)the Guangxi University Student Innovation and Entrepreneurship Training Program 201911838065the Guangxi University Middle-aged and Young Teachers′ Basic Research Ability Improvement Project 2019KY0709the Hezhou Innovation-Driven Development Project Hekechuang ZX1907001

Figures(6)

  • In order to improve the electrochemical performance of LiNi0.5Mn1.5O4 lithium ion batteries, a physical mixing method was used to add ethyl orthosilicate (TEOS) to the negative electrode slurry with the mass ratios of TEOS to graphite of 0:100, 5:100, 10:100, 16:100 and 20:100. A 502030-type flexible packaging lithium-ion battery was assembled by using LiNi0.5Mn1.5O4 as the positive electrode and graphite as the negative electrode. The battery was tested for constant current charge and discharge and internal resistance. The test results show that the internal resistance of the 0TEOS(m(TEOS):m(graphite)=0:100) and 16TEOS(m(TEOS):m(graphite)=16:100) batteries are 159 mΩ and 105 mΩ, respectively. After 200 cycles, the capacity retention rates are 52.6% and 65.7%, and the specific discharge capacities are 46 mA·h/g and 62.9 mA·h/g, respectively. The addition of TEOS to the negative electrode slurry through a physical mixing method is beneficial to the formation of a structurally stable artificial solid electrolyte interface(SEI) film on the surface of the negative electrode, and improves the cycling and rate performance of LiNi0.5Mn1.5O4.
  • 加载中
    1. [1]

      Lu Y, Hou X, Miao L. Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries[J]. Angew Chem Int Ed, 2019,58(21):7020-7024. doi: 10.1002/anie.201902185

    2. [2]

      Xu C, Xiang W, Wu Z. Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2019,11(18):16629-16638. doi: 10.1021/acsami.9b03403

    3. [3]

      Zhao H J, Deng N P, Yan J. Effect of Octaphenyl Polyhedral Oligomeric Silsesquioxane on the Electrospun Poly-m-phenylene Isophthalamid Separators for Lithium-Ion Batteries with High Safety and Excellent Electrochemical Performance[J]. Chem Eng J, 2019,356:11-21. doi: 10.1016/j.cej.2018.09.010

    4. [4]

      Yin Y H, Gao M X, Pan H G. High-Rate Capability of LiFePO4 Cathode Materials Containing Fe2P and Trace Carbon[J]. J Power Sources, 2012,199(2):256-262.  

    5. [5]

      Gao M X, Lin Y, Yin Y H. Structure Optimization and the Structural Factors for the Ischarge Rate Performance of LiFePO4/C Cathode Materials[J]. Electrochim Acta, 2010,55:8043-8050. doi: 10.1016/j.electacta.2010.02.003

    6. [6]

      Manthiram A, Chemelewski K, Lee E S. A Perspective on the High-Voltage LiMn1.5Ni0.5O4 Spinel Cathode for Lithium-Ion Batteries[J]. Energy Environ Sci, 2014,7(4):1339-1350. doi: 10.1039/c3ee42981d

    7. [7]

      Gao H, Maglia F, Lamp P. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode-Electrolyte Interface in Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2017,9(51):44542-44549. doi: 10.1021/acsami.7b15395

    8. [8]

      Zeng H N, He J, Fang D Y. Nano-Sized AlPO4 Coating Layer on Graphite Powder to Improve the Electrochemical Properties of High-Voltage Graphite/LiNi0.5Mn1.5O4 Li-Ion Cells[J]. Energy Technol, 2019,7(9)1801078. doi: 10.1002/ente.201801078

    9. [9]

      Takahiro K. Lattice Deformation of LiNi0.5Mn1.5O4 Spinel Cathode for Li-Ion Batteries by Ball Milling[J]. J Power Sources, 2019,419:52-57. doi: 10.1016/j.jpowsour.2019.02.063

    10. [10]

      Cui X L, Geng T T, Zhang F L. The Influence of the Voltage Plateau on the Coulombic Efficiency and Capacity Degradation in LiNi0.5Mn1.5O4 Materials[J]. J Alloy Compd, 2020,820153443. doi: 10.1016/j.jallcom.2019.153443

    11. [11]

      Hanf L, Henschel J, Diehl M. Mn2+ or Mn3+ Investigating Transition Metal Dissolution of Manganese Species in Lithium Ion Battery Electrolytes by Capillary Electrophoresis[J]. Electrophoresis, 2020,41:697-704. doi: 10.1002/elps.201900443

    12. [12]

      Chen G R, An J, Meng Y M. Cation and Anion Co-doping Synergy to Improve Structural Stability of Li- and Mn-Rich Layered Cathode Materials for Lithium Ion Batteries[J]. Nano Energ, 2019,57:157-165. doi: 10.1016/j.nanoen.2018.12.049

    13. [13]

      Li S Y, Wei Y, Wang P. Synergism of Cu and Al Co-doping on Improvements of Structural Integrity and Electrochemical Performance for LiNi0.5Mn1.5O4[J]. J Alloy Compd, 2020,80153140.

    14. [14]

      Liu J, Cheng Y F, Fan Q L. Tri-functional Coating to Enhance the Capacity Retention of LiNi0.5Mn1.5O4 for High Power Lithium ion Battery[J]. Mater Lett, 2018,214(1):68-71.  

    15. [15]

      Fang X, Shen C F, Ge M Y. High-Power Lithium Ion Batteries Based on Flexible and Light-Weight Cathode of LiNi0.5Mn1.5O4/Carbon Nanotube Film[J]. Nano Energy, 2015,12:43-51. doi: 10.1016/j.nanoen.2014.11.052

    16. [16]

      Liu H P, Liang G M, Gao C. Insight into the Improved Cycling Stability of Spere-Nanorod-Like Micro-nanostructured High Voltage Spinel Cathode for Lithium-Ion Batteries[J]. Nano Energy, 2019,66104100. doi: 10.1016/j.nanoen.2019.104100

    17. [17]

      Ma F, Geng F S, Yuan A B. Facile Synthesis and Characterization of a SnO2-modified LiNi0.5Mn1.5O4 High-Voltage Cathode Material with Superior Electrochemical Performance for Lithium Ion Batteries[J]. Phys Chem Chem Phys, 2017,19(15):9983-9991. doi: 10.1039/C7CP00943G

    18. [18]

      Sun X G, Angell C A. New Sulfone Electrolytes for Rechargeable Lithium Batteries[J]. Electrochem Commun, 2005,7(3):261-266. doi: 10.1016/j.elecom.2005.01.010

    19. [19]

      Wang H Q, Xie X S, Wei X L. A New Strategy to Stabilize Capacity and Insight into the Interface Behavior in Electrochemical Reaction of LiNi0.5Mn1.5O4/Graphite System for High-Voltage Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2017,9(38):33274-33287. doi: 10.1021/acsami.7b08828

    20. [20]

      Wang K, Xing L D, Zhu Y M. A Comparative Study of Si-Containing Electrolyte Additives for Lithium Ion Battery:Which One is Better and Why is It Better[J]. J Power Sources, 2017,342:677-684. doi: 10.1016/j.jpowsour.2016.12.112

    21. [21]

      MENG Qi, ZHOU Siyuan, LI Kun. Research on Preparation and Electrochemical Properties of Silicon/Carbon Compsites by Spray Drying Method[J]. Guangzhou Chem Ind, 2019,47(12):32-36.  

    22. [22]

      FENG Xuejiao, CUI Hongmin, XIAO Zhengqiang. Synthesis of Porous Silicon Oxide/Silicon/Carbon Composite Material from Micro-SiO for Lithium Storage[J]. Chinese J Appl Chem, 2017,34(1):76-82.  

    23. [23]

      Pang W K, Lin H F, Peterson V K. Enhanced Rate-Capability and Cycling-Stability of 5 V SiO2- and Polyimide-Coated Cation Ordered LiNi0.5Mn1.5O4 Lithium-Ion Battery Positive Electrodes[J]. J Phys Chem C, 2017,12(7):3680-3689.  

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(8)
  • Abstract views(833)
  • HTML views(244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return