Citation: SUN Zhicong, MENG Qinglei, MA Rongpeng, GE Junjie, LIU Changpeng, XING Wei. Promotion Effect of Functionalized Carbon Nitride on Pd-Based Catalyst for Hydrogen Generation from Formic Acid[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1187-1194. doi: 10.11944/j.issn.1000-0518.2020.10.200088 shu

Promotion Effect of Functionalized Carbon Nitride on Pd-Based Catalyst for Hydrogen Generation from Formic Acid

  • Corresponding author: LIU Changpeng, liuchp@ciac.ac.cn XING Wei, xingwei@ciac.ac.cn
  • Received Date: 23 March 2020
    Revised Date: 12 May 2020
    Accepted Date: 9 June 2020

    Fund Project: the National Science and Technology Major Project 2017YFB0102900National Natural Science Foundation of China 21433003National Natural Science Foundation of China 21633008Supported by the National Natural Science Foundation of China(No.21633008, No.21433003), Jilin Province Science and Technology Development Program(No.20170203003SF), and the National Science and Technology Major Project(No.2017YFB0102900)Jilin Province Science and Technology Development Program 20170203003SF

Figures(3)

  • The supported Pd-based catalyst is one of the most effective catalysts for the decomposition of formic acid into hydrogen, in which the N content of the carbon nitride support is relatively high. The carbon nitride prepared by one-step pyrolysis method is usually bulk, which makes it difficult to effectively disperse surface metal nanoparticles (NPs). Functionalized carbon nitride was obtained by pyrolyzing the urea precursor after solvation and used as a support. A functional carbon nitride-supported Pd-based catalyst (Pd/C3N4-F) was prepared by anion exchange and sodium borohydride direct reduction. The structure of the material was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), and the performance of the catalyst was tested by gas mass flow meter. Pd/C3N4-F has excellent catalytic performance for hydrogen production from formic acid decomposition and its initial TOF (total conversion frequency) value and mass specific activity at 30 ℃ are 1824 h-1 and 17.14 molH2/(gPd·h), respectively. The analysis of the product by gas chromatography (GS) shows that no by-product CO is formed, indicating that it has excellent selectivity. With the increase of temperature (30~40 ℃), the catalyst performance gradually improves.
  • 加载中
    1. [1]

      Turner J A. Sustainable Hydrogen Production[J]. Science, 2004,305(5685):972-974.

    2. [2]

      Schlapbach L, Zuttel A. Hydrogen-storage Materials for Mobile Applications[J]. Nature, 2001,414:353-358. doi: 10.1038/35104634

    3. [3]

      Ouyang L Z, Yang X S, Zhu M. Enhanced Hydrogen Storage Kinetics and Stability by Synergistic Effects of in situ Formed CeH2.73 and Ni in CeH2.73-MgH2-Ni Nanocomposites[J]. J Phys Chem C, 2014,118(15):7808-7820. doi: 10.1021/jp500439n

    4. [4]

      Jiang Y, Fan X, Chen M. AuPd Nanoparticles Anchored on Nitrogen-Decorated Carbon Nanosheets with Highly Efficient and Selective Catalysis for the Dehydrogenation of Formic Acid[J]. J Phys Chem C, 2018,122(9):4792-4801. doi: 10.1021/acs.jpcc.8b00082

    5. [5]

      Fellay C, Dyson P J, Laurenczy G. A Viable Hydrogen-Storage System Based on Selective Formic Acid Decomposition with a Ruthenium Catalyst[J]. Angew Chem Int Ed, 2008,47(21):3966-3968. doi: 10.1002/anie.200800320

    6. [6]

      Li G, Jin R. Atomically Precise Gold Nanoclusters as New Model Catalysts[J]. Acc Chem Res, 2013,46(8):1749-1758. doi: 10.1021/ar300213z

    7. [7]

      Liu Q, Zhang T. A Schiff Base Modified Gold Catalyst for Green and Efficient H2 Production from Formic Acid[J]. Energy Environ Sci, 2015,8:3204-3207. doi: 10.1039/C5EE02506K

    8. [8]

      Grasemann M, Laurenczy G. Formic Acid as a Hydrogen Source Recent Developments and Future Trends[J]. Energy Environ Sci, 2012,5:8171-8181. doi: 10.1039/c2ee21928j

    9. [9]

      Li Z, Xu Q. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid[J]. Acc Chem Res, 2017,50(6):1449-1458. doi: 10.1021/acs.accounts.7b00132

    10. [10]

      Aijaz A, Karkamkar A, Xu Q. Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal-Organic Framework:A Double Solvents Approach[J]. J Am Chem Soc, 2012,134(34):13926-13929. doi: 10.1021/ja3043905

    11. [11]

      Wang X, Sun G, Chen P. Heteroatom-Doped Graphene Materials:Synthesis, Properties and Applications[J]. Chem Soc Rev, 2014,43:7067-7098. doi: 10.1039/C4CS00141A

    12. [12]

      Deng Y, Xie Y, Ji X. Review on Recent Advances in Nitrogen-Doped Carbons:Preparations and Applications in Super-capacitors[J]. J Mater Chem A, 2016,4:1144-1173. doi: 10.1039/C5TA08620E

    13. [13]

      Guo L, Yang J, Fan M. Role of Hydrogen Peroxide Preoxidizing on CO2 Adsorption of Nitrogen-Doped Carbons Produced from Coconut Shell[J]. ACS Sustainable Chem Eng, 2016,4(5):2806-2813. doi: 10.1021/acssuschemeng.6b00327

    14. [14]

      Liu Q, Duan Y, Zhang J. Direct Synthesis of Nitrogen-Doped Carbon Nanosheets with High Surface Area and Excellent Oxygen Reduction Performance[J]. Langmuir, 2014,30(27):8238-8245. doi: 10.1021/la404995y

    15. [15]

      Sheng Z, Shao L, Chen J. Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysts[J]. ACS Nano, 2011,5(6):4350-4358. doi: 10.1021/nn103584t

    16. [16]

      Hou S, Cai X, Wu H. Nitrogen-Doped Graphene for Dye-Sensitized Solar Cells and the Role of Nitrogen States in Triiodide Reduction[J]. Energy Environ Sci, 2013,6:3356-3362. doi: 10.1039/c3ee42516a

    17. [17]

      Choi C H, Chung M W, Park S. Enhanced Electrochemical Oxygen Reduction Reaction by Restacking of N-Doped Single Graphene Layers[J]. RSC Adv, 2013,3:4246-4253. doi: 10.1039/c3ra23180a

    18. [18]

      Lai L, Potts J R, Zhan D. Exploration of the Active Center Structure of Nitrogen-Doped Graphene-Based Catalysts for Oxygen Reduction Reaction[J]. Energy Environ Sci, 2012,5:7936-7942. doi: 10.1039/c2ee21802j

    19. [19]

      Lv Q, Meng Q, Liu W. Pd-PdO Interface as Active Site for HCOOH Selective Dehydrogenation at Ambient Condition[J]. J Phys Chem C, 2018,122(4):2081-2088. doi: 10.1021/acs.jpcc.7b08105

    20. [20]

      Jiang L, Li J, Wang K. Low Boiling Point Solvent Mediated Strategy to Synthesize Functionalized Monolayer Carbon Nitride for Superior Photocatalytic Hydrogen Evolution[J]. Appl Catal B:Environ, ,260118181. doi: 10.1016/j.apcatb.2019.118181

    21. [21]

      Wang X, Meng Q, Liu C. Recent Progress in Hydrogen Production from Formic Acid Decomposition[J]. Int J Hydrogen Energy, 2018,43:7055-7071. doi: 10.1016/j.ijhydene.2018.02.146

    22. [22]

      Wang Q, Tsumori N, Xu Q. Fast Dehydrogenation of Formic Acid over Palladium Nanoparticles Immobilized in Nitrogen-Doped Hierarchically Porous Carbon[J]. ACS Catal, 2018,8(12):12041-12045. doi: 10.1021/acscatal.8b03444

    23. [23]

      Bi Q, Lin J, Liu Y. Dehydrogenation of Formic Acid at Room Temperature:Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon[J]. Angew Chem Int Ed, 2016,55(39):11849-11853.  

    24. [24]

      Zhou X, Huang Y, Xing W. High-Quality Hydrogen from the Catalyzed Decomposition of Formic Acid by Pd-Au/C and Pd-Ag/C[J]. Chem Commun, 2008,30:3540-3542.  

    25. [25]

      Li Z, Yang X, Tsumori N. Tandem Nitrogen Functionalization of Porous Carbon:Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid[J]. ACS Catal, 2017,7(4):2720-2724. doi: 10.1021/acscatal.7b00053

    26. [26]

      Zhu Q, Tsumori N, Xu Q. Sodium Hydroxide-Assisted Growth of Uniform Pd Nanoparticles on Nanoporous Carbon MSC-30 for Efficient and Complete Dehydrogenation of Formic Acid under Ambient Conditions[J]. Chem Sci, 2014,5:195-199. doi: 10.1039/C3SC52448E

    27. [27]

      Jiang K, Xu K, Zou S. B-Doped Pd Catalyst:Boosting Room-Temperature Hydrogen Production from Formic Acid-Formate Solutions[J]. J Am Chem Soc, 2014,136(13):4861-4864. doi: 10.1021/ja5008917

    28. [28]

      Cai Y, Li X, Zhang Y. Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based Mott-Schottky Photocatalyst[J]. Angew Chem Int Ed, 2013,52(45):11822-118225. doi: 10.1002/anie.201304652

    29. [29]

      Wang X, Meng Q, Liu C. Metal Organic Framework Derived Nitrogen-doped Carbon Anchored Palladium Nanoparticles for Ambient Temperature Formic Acid Decomposition[J]. Int J Hydrogen Energy, 2019,44:28402-28408. doi: 10.1016/j.ijhydene.2019.05.083

    30. [30]

      Zhang X, Shang N, Shang H. Nitrogen-Decorated Porous Carbon Supported AgPd Nanoparticles for Boosting Hydrogen Generation from Formic Acid[J]. Energy Technol, 2019,7(1):140-145. doi: 10.1002/ente.201800522

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    3. [3]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    10. [10]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(4)
  • Abstract views(716)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return