Citation: YU Zhiqiang, QU Jiangying, LI Jielan, ZANG Yunhao, GU Jianfeng, GAO Feng. Assembly of Graphene Oxide-Based Flexible Generator and Its Water Evaporation Power Generation Performance[J]. Chinese Journal of Applied Chemistry, ;2020, 37(10): 1164-1171. doi: 10.11944/j.issn.1000-0518.2020.10.200087 shu

Assembly of Graphene Oxide-Based Flexible Generator and Its Water Evaporation Power Generation Performance

  • Corresponding author: GAO Feng, fenggao2003@163.com
  • Received Date: 23 March 2020
    Revised Date: 21 April 2020
    Accepted Date: 19 May 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.U1610114, No.51972059), China Scholarship Council Fund(No.201908440038)the National Natural Science Foundation of China U1610114China Scholarship Council Fund 201908440038the National Natural Science Foundation of China 51972059

Figures(6)

  • How to use water evaporation energy which is widely existing in nature is a challenging subject. In this paper, graphene oxide (GO) with abundant functional groups and excellent hydrophilicity was used as the power generation material, and reduced graphene oxide (RGO) prepared by hydrazine reduction was used as the electrode material. GO/RGO flexible generator was assembled by a simple dropping method on the polyethylene terephthalate (PET) substrate. The working area of GO film generator was fixed as 4.5 cm by 1.5 cm, and its power generation performance induced by water evaporation was studied. Driven by natural water evaporation at room temperature, it can output an open circuit voltage (Voc) of 90 mV and a short circuit current (Isc) of 0.6 μA as well as power density of 1.25 μW/cm3. The generator also exhibits excellent flexibility and high stability. Based on the classic flow potential theory, the mechanism of GO/RGO generator induced by water evaporation is proposed. This paper provides a new way for the use of water evaporation energy with simple steps, low cost and stable performance.
  • 加载中
    1. [1]

      Penman H L. Natural Evaporation from Open Water, Bare Soil and Grass[J]. Proc A, 1948,193(1032):120-145.  

    2. [2]

      Bachhuber C. Energy from the Evaporation of Water[J]. Am J Phys, 1983,51(3):259-264. doi: 10.1119/1.13297

    3. [3]

      Duan F, Badam V K, Durst F. Thermocapillary Transport of Energy During Water Evaporation[J]. Phys Rev E, 2005,72(5)056303. doi: 10.1103/PhysRevE.72.056303

    4. [4]

      Yang D, Converse M C, Mahvi D M. Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating[J]. IEEE Trans Biomed Eng, 2007,54(8):1382-1388. doi: 10.1109/TBME.2007.890740

    5. [5]

      Stephens G L, Li J, Wild M. An update on Earth's Energy Balance in Light of the Latest Global Observations[J]. Nat Geosci, 2012,5:691-696. doi: 10.1038/ngeo1580

    6. [6]

      Liu K, Yang P, Li S. Induced Potential in Porous Carbon Films Through Water Vapor Absorption[J]. Angew Chem Int Ed, 2016,55:8003-8007. doi: 10.1002/anie.201602708

    7. [7]

      Xue G, Xu Y, Ding T. Water-Evaporation-Induced Electricity with Nanostructured Carbon Materials[J]. Nat Nanotechnol, 2017,12(4):317-321.  

    8. [8]

      Ding T, Liu K, Li J. All-Printed Porous Carbon Film for Electricity Generation from Evaporation-Driven Water Flow[J]. Adv Funct Mater, 2017,271700551. doi: 10.1002/adfm.201700551

    9. [9]

      Zhu L, Gao M, Peh C K N. Intelligent Multiple Liquid Evaporation Power Generation Platform Using Distinctive Jaboticaba-Like Carbon Nanosphere@TiO2 Nanowire[J]. J Mater Chem A, 2019,7:6766-6772. doi: 10.1039/C8TA12328D

    10. [10]

      Zhu L G, Guo M M, Nuo P C K. Carbon Sponges:Self-contained Monolithic Carbon Sponges for Solar-Driven Interfacial Water Evaporation Distillation and Electricity Generation[J]. Adv Eng Mater, 2018,8(16)1702149. doi: 10.1002/aenm.201702149

    11. [11]

      Zhang G, Duan Z, Qi X. Harvesting Environment Energy from Water-Evaporation over Free-Standing Graphene Oxide Sponges[J]. Carbon, 2019,148:1-8. doi: 10.1016/j.carbon.2019.03.041

    12. [12]

      Liu G, Chen T, Xu J. Blue Energy Harvesting on Nanostructured Carbon Materials[J]. J Mater Chem A, 2018,8:18357-18377.  

    13. [13]

      Liu A T, Zhang G, Cottrill A L. Direct electricity Generation Mediated by Molecular Interactions with Low Dimensional Carbon Materials-A Mechanistic Perspective[J]. Adv Eng Mater, 2018,81802212. doi: 10.1002/aenm.201802212

    14. [14]

      Yuan L Y, Tao Y T, Chen J. Carbon Nanoparticles on Carbon Fabric for Flexible and High-Performance Field Emitters[J]. Adv Funct Mater, 2011,21:2150-2154. doi: 10.1002/adfm.201100172

    15. [15]

      Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958,80(6)1339. doi: 10.1021/ja01539a017

    16. [16]

      Wang X, Bai H, Shi G. Size Fractionation of Graphene Oxide Sheets by pH-Assisted Selective Sedimentation[J]. J Am Chem Soc, 2011,133(16):6338-6342. doi: 10.1021/ja200218y

    17. [17]

      Li D, Marc B, Gilje S. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nat Nanotechnol, 2008,3(2):101-105.  

    18. [18]

      Qu J Y, Gao F, Z Q. Highly Atom-Economic Synthesis of Graphene/Mn3O4 Hybrid Composites for Electrochemical Supercapacitors[J]. Nanoscale, 2013,5(7):2999-3005. doi: 10.1039/c3nr33700f

    19. [19]

      CHEN Liwei, HAN Qing, ZHANG Huimin. Preparation of Graphene-Based Microelectrode and Its Application in Electrochemical Sensing[J]. Chinese J Appl Chem, 2018,35(3):286-298.  

    20. [20]

      Gao F, Qu J Y, Zhao Z. Efficient Synthesis of Graphene/Sulfur Nanocomposites with High Sulfur Content and Their Application as Cathodes for Li-S Batteries[J]. J Mater Chem A, 2016,4(41):16219-16224. doi: 10.1039/C6TA06953C

    21. [21]

      Zhao F, Cheng H, Zhang Z. Direct Power Generation from a Graphene Oxide Film under Moisture[J]. Adv Mater, 2015,27(29):4351-4357. doi: 10.1002/adma.201501867

    22. [22]

      ZHAO Jiaxin, XIE Yaqiao, LI Jielan. Self-assembly of Graphene Mini-motor and Its Ethanol-Driven Motion and Oil Adsorption Properties[J]. Chinese J Appl Chem, 2019,36(10):1202-1210.  

    23. [23]

      Gogoi R K, Saha K, Deka J. Solvent-Driven Responsive Bilayer Membranes of Clay and Graphene Oxide[J]. J Mater Chem A, 2017,5(7):3523-3533. doi: 10.1039/C6TA09341H

    24. [24]

      Tian J L, Qu J Y, Gao F. Surface Charge Density-Dependent Performance of Ni-Al Layered Double Hydroxide-Based Flexible Self-powered Generators Driven by Natural Water Evaporation[J]. Nano Energy, 2020,70104502. doi: 10.1016/j.nanoen.2020.104502

    25. [25]

      Chen X, Goodnight D, Gao Z. Scaling up Nanoscale Water-Driven Energy Conversion into Evaporation-Driven Engines and Generators[J]. Nat Commun, 2015,6:7346-7353. doi: 10.1038/ncomms8346

    26. [26]

      Cavusoglu A H, Chen X, Gentine P. Potential for Natural Evaporation as a Reliable Renewable Energy Resource[J]. Nat Commun, 2017,8:617-624. doi: 10.1038/s41467-017-00581-w

    27. [27]

      Sun J C, Qu J Y, Gao F. Potential for Natural Evaporation as a Reliable Renewable Energy Resource[J]. Nano Energy, 2019,57:269-278. doi: 10.1016/j.nanoen.2018.12.042

    28. [28]

      Liu K, Ding T, Mo X. Flexible Microfluidics Nanogenerator Based on the Electrokinetic Conversion[J]. Nano Energy, 2016,30:684-690. doi: 10.1016/j.nanoen.2016.10.058

    29. [29]

      Daiguji H, Yang P, Andrew J S. Electrochemomechanical Energy Conversion in Nanofluidic Channels[J]. Nano Lett, 2004,4(12):2315-2321. doi: 10.1021/nl0489945

    30. [30]

      Van der H F H J, Bonthuis D J, Stein D. Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels[J]. Nano Lett, 2006,6(10):2232-2237. doi: 10.1021/nl061524l

    31. [31]

      Van der H F H J, Bonthuis D J, Stein D. Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels[J]. Nano Lett, 2007,7(4):1022-1025. doi: 10.1021/nl070194h

    32. [32]

      Zhu Y L, Zhan K, Hou X. Interface Design of Nanochannels for Energy Utilization[J]. ACS Nano, 2018acsnano.7b07923.  

    33. [33]

      Koltonow A R, Huang J X. Two-Dimensional Nanofluidics[J]. Science, 2016,351(6280):1395-1396. doi: 10.1126/science.aaf5289

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    14. [14]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

Metrics
  • PDF Downloads(10)
  • Abstract views(1882)
  • HTML views(695)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return