Simultaneous Determination of Catechol and Hydroquinone by Copper Oxide Nanoparticles and Carbon Nanotubes Modified Glassy Carbon Electrode
- Corresponding author: CHANG Fengxia, changfengxia@swun.edu.cn
Citation:
CHANG Fengxia, SHANG Zongyi, DONG Qing, LONG Zhiyan, DENG Yixue. Simultaneous Determination of Catechol and Hydroquinone by Copper Oxide Nanoparticles and Carbon Nanotubes Modified Glassy Carbon Electrode[J]. Chinese Journal of Applied Chemistry,
;2020, 37(10): 1195-1202.
doi:
10.11944/j.issn.1000-0518.2020.10.200048
Wang H F, Wu Y Y, Yan X P. Room-Temperature Phosphorescent Discrimination of Catechol from Resorcinol and Hydroquinone Based on Sodium Tripolyphosphate Capped Mn-Doped ZnS Quantum Dots[J]. Anal Chem, 2013,85(3):1920-1925.
Chen T T, Xu J Q, Arsalan M. Controlled Synthesis of Au@Pd Core-Shell Nanocomposites and their Application for Electrochemical Sensing of Hydroquinone[J]. Talanta, 2019,198:78-85.
Huang D L, Wang J, Cheng F. Synergistic Effect of a Cobalt Fluoroporphyrin and Graphene Oxide on the Simultaneous Voltammetric Determination of Catechol and Hydroquinone[J]. Microchim Acta, 2019,186(6):1-11.
Marrubini G, Calleri E, Coccini T. Direct Analysis of Phenol, Catechol and Hydroquinone in Human Urine by Coupled-Column HPLC with Fluorimetric Detection[J]. Chromatographia, 2005,62(1/2):25-31.
Xie T Y, Liu Q W, Shi Y R. Simultaneous Determination of Positional Isomers of Benzenediols by Capillary Zone Electrophoresis with Square Wave Amperometric detection[J]. J Chromatogr A, 2006,1109(2):317-321.
Liu J, Lin Z. Simultaneous Determination of Mixed Phenol, Catechol, and Quinol by Double Fourier Transform Filtering and Second Ratio Spectra Derivative Spectrophotometry[J]. Spectrosc Spectr Anal, 2000,20(4):480-483.
Cui H, Zhang Q L, Myint A. Chemiluminescence of Cerium(IV)-Rhodamine 6G-Phenolic Compound System[J]. J Photochem Photobiol A, 2006,181(2/3):238-245.
Chen T W, Yu X N, Li S J. Simultaneous Determination of Dihydroxybenzene Isomers Using Glass Carbon Electrode Modified with 3D CNT-Graphene Decorated with Au Nanoparticles[J]. Int J Electrochem Sc, 2019,14(8):7037-7046.
Yang S Y, Yang M, Liu Q Y. An Ultrasensitive Electrochemical Sensor Based on Multiwalled Carbon Nanotube@Reduced Graphene Oxide Nanoribbon Composite for Simultaneous Determination of Hydroquinone, Catechol and Resorcinol[J]. J Electrochem Soc, 2019,166(6):B547-B553.
Zhao C, Song J F, Zhang J C. Determination of Total Phenols in Environmental Wastewater by Flow-Injection Analysis with a Biamperometric Detector[J]. Anal Bioanal Chem, 2002,374(3):498-504.
WANG Zhongteng, LIU Hanhan, TENG Hui. A Voltammetric Sensor Based on Graphene-Gold Nanocomposite Film for Simultaneous Determination of Hydroquinone and Catechol[J]. J Anhui Sci Tech Univ, 2018,32(5):64-72.
FU Ju, TAN Xiaohong, SONG Xinjian. Polypyrimidine/Graphene Composite Film Modified Electrode for the Simultaneous Detection of Catechol and Hydroquinone[J]. J Hubei Univ Nationnalities(Nat Sci Edn), 2016,34(2):195-198.
Zhao L, Yu J, Yue S Z. Nickel Oxide/Carbon Nanotube Nanocomposites Prepared by Atomic Layer Deposition for Electrochemical Sensing of Hydroquinone and Catechol[J]. J Electroanal Chem, 2018,808:245-251.
Alshahrani L A, Miao L Q, Zhang Y Y. 3D-Flower-Like Copper Sulfide Nanoflake-Decorated Carbon Nanofragments-Modified Glassy Carbon Electrodes for Simultaneous Electrocatalytic Sensing of Coexisting Hydroquinone and Catechol[J]. Sensors, 2019,19(10):1-12.
Bozkurt G, Bayrakceken A, Ozer A K. Synthesis and Characterization of CuO at Nanoscale[J]. Appl Surf Sci, 2014,318:244-250.
Khanna P K, Gaikwad S, Adhyapak R. Synthesis and Characterization of Copper Nanoparticles[J]. Mater Lett, 2007,61(25):4711-4714.
Teng F, Yao W Q, Zheng Y F. Synthesis of Flower-like CuO Nanostructures as a Sensitive Sensor for Catalysis[J]. Sens Actuators B, 2008,134(2):761-768.
Patil S A, Patil L A, Patil D R. CuO-Modified Tin Titanate Thick Film Resistors as H2-Gas Sensors[J]. Sens Actuators B, 2007,123(1):233-239.
Xiang J Y, Tu J P, Huang X H. A Comparison of Anodically Grown CuO Nanotube Film and Cu2O Film as Anodes for Lithium Ion Batteries[J]. J Solid State Electrochem, 2008,12(7/8):941-945.
Alizadeh T, Mirzagholipur S. A Nafion-Free Non-Enzymatic Amperometric Glucose Sensor Based on Copper Oxide Nanoparticles-Graphene Nanocomposite[J]. Sens Actuators B, 2014,198:438-447.
Wang H, Xu J Z, Zhu J J. Preparation of CuO Nanoparticles by Microwave Irradiation[J]. J Cryst Growth, 2002,244(1):88-94.
Suzuki K, Tanaka N, Ando A. Size-Selected Copper Oxide Nanoparticles Synthesized by Laser Ablation[J]. J Nanopart Res, 2012,14(5):1-11.
Kumar R V, Diamant Y, Gedanken A. Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates[J]. Chem Mater, 2000,12(8):2301-2305.
Zhu J W, Li D, Chen H Q. Highly Dispersed CuO Nanoparticles Prepared by a Novel Quick-Precipitation Method[J]. Mater Lett, 2004,58(26):3324-3327.
Arvand M, Ardaki M S, Zanjanchi M A. A New Sensing Platform Based on Electrospun Copper Oxide/Ionic Liquid Nanocomposite for Selective Determination of Risperidone[J]. RSC Adv, 2015,5(51):40578-40587.
LUO Yunfeng, LIU Baoshuang, LI Chunxiang. All Solid-State Calcium Ion Selective Electrode Based on Carbon Nanotube/Ag/MoS2 Transducer[J]. Chinese J Appl Chem, 2019,36(6):704-710.
XU Siyuan, LEI Ping, JIN Guanping. Determination of Pb(Ⅱ), Cd(Ⅱ) with Melamine Chelating Resin/Multi-walled Carbon Nanotubes Composites Modified Waxed Graphite Electrode[J]. Chinese J Appl Chem, 2014,31(2):206-211.
YU Hao, ZHENG Xiaochen, LIU Rantong. Preparation of Copper-iron Hexacyanoferrate Loaded Multi-walled Carbon Nanotubes Modified Electrode for the Determination of Nitrite[J]. Chinese J Appl Chem, 2014,31(11):1336-1344.
MENG Kuikui, CUO Jialing, YUN Yangfang. Simultaneous Sensitive Determination of Catechol and Hydroquinone at Gold Nanoparticles Modified Glassy Carbon Electrode[J]. Chem Res Appl, 2018,30(3):432-436.
Zhang H Q, Huang Y H, Hu S R. Self-assembly of Graphitic Carbon Nitride Nanosheets-Carbon Nanotube Composite for Electrochemical Simultaneous Determination of Catechol and Hydroquinone[J]. Electrochim Acta, 2015,176:28-35.
Hu F X, Chen S H, Wang C Y. Study on the Application of Reduced Graphene Oxide and Multiwall Carbon Nanotubes Hybrid Materials for Simultaneous Determination of Catechol, Hydroquinone, p-Cresol and Nitrite[J]. Anal Chim Acta, 2012,724:40-46.
Goulart L A, Goncalves R, Correa A A. Synergic Effect of Silver Nanoparticles and Carbon Nanotubes on the Simultaneous Voltammetric Determination of Hydroquinone, Catechol, Bisphenol A and Phenol[J]. Microchim Acta, 2017,185(1):1-9.
WAN Qijin, LIAO Hualing, LIU Yi. Simultaneous Determination of Catechol and Hydroquinpne in Graphene Modified Electrode[J]. J Wuhan Inst Tech, 2013,35(2):16-23.
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
Yongqing Kuang , Jie Liu , Jianjun Feng , Wen Yang , Shuanglian Cai , Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
c(CC)=c(HQ)=0.500 mmol/L, supporting electrolyte:PBS(pH=7.4); scan rate:50 mV/s
c(CC)=c(HQ)=0.500 mmol/L, supporting electrolyte:PBS(pH=7.4); scan rate:50 mV/s
A:The volumes of CuO(NP)-MCT on the GCEs surface are 3, 4, 5, 6, 7, 8, and 9 μL separately for line a to g
A:from a to n:10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200 mV/s
From a to i: 0, 0.000600, 0.00100, 0.0100, 0.100, 0.300, 0.500, 1.00, 3.00 mmol/L