Citation: SUN Zhenlong, YAN Shunjie, ZHOU Rongtao, ZHANG Zhenyan, OUYANG Zhaofei, ZHU Xuezhen, YIN Jinghua. Recent Progress in the Development of Smart Coatings Based on Antimicrobial Peptides[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 865-876. doi: 10.11944/j.issn.1000-0518.2020.08.200145 shu

Recent Progress in the Development of Smart Coatings Based on Antimicrobial Peptides

  • Corresponding author: YAN Shunjie, sjyan@weigaogroup.com
  • Received Date: 15 May 2020
    Revised Date: 3 June 2020
    Accepted Date: 8 June 2020

    Fund Project: the Chinese Academy of Sciences-WEGO Group Hightech & Development Program 2017-2020the National Key Research and Development Project 2017YFC1104800China Postdoctoral Science Foundation 2017M621225Supported by the National Key Research and Development Project(No.2017YFC1104800), the National New Material Production and Application Demonstration Platform Project(No.TC90H3ZV), China Postdoctoral Science Foundation(No.2017M621225), the Postdoctoral Innovation Project of Shandong(No.[2019]173), Postdoctoral Project of Weihai(No.[2018]45), and the Chinese Academy of Sciences-WEGO Group Hightech & Development Program(No.2017-2020)the National New Material Production and Application Demonstration Platform Project TC90H3ZVPostdoctoral Project of Weihai [2018]45the Postdoctoral Innovation Project of Shandong [2019]173

Figures(12)

  • Antimicrobial peptides (AMP) have been extensively studied due to their rapid-acting, broad-spectrum activities and low possibility to develop resistance to bacteria. A potential approach to combating device-associated infections is to construct AMP-based antibacterial coatings on biomaterial surfaces. However, traditional AMP releasing coatings show temporary action due to the inherently limited reservoirs, while direct surface-tethering of AMP on surface usually suffers from the accumulation of dead microorganisms blocking functional groups. Considering the varied and complex applications of biomaterials, it is highly required to facilely adjust its functions in service and in antibacterial cases. A generic strategy by integrating the stimuli-responsive polymers and the existing antibacterial strategies exhibits a great potential in advancing the clinical applications of the AMP-based smart antibacterial platforms. In this review, the progress in the development of smart coatings based on AMP is reviewed. The main approaches to designing AMP releasing and non-releasing coatings are described, the roles of stimuli-responsive polymers in AMP-based smart coatings are also introduced, and the switching between its functions in service and antibacterial function is discussed. Furthermore, the future development of AMP-based smart coatings are prospected.
  • 加载中
    1. [1]

      Campoccia D, Montanaro L, Arciola C R. A Review of the Clinical Implications of Anti-infective Biomaterials and Infection-Resistant Surfaces[J]. Biomaterials, 2013,34:8018-8029.  

    2. [2]

      Campoccia D, Montanaro L, Arciola C R. A Review of the Biomaterials Technologies for Infection-Resistant Surfaces[J]. Biomaterials, 2013,34:8533-8554.  

    3. [3]

      ZHANG Jianhong, CHEN Jingjie, GAO Lingling. Opportunities and Challenges for Antimicrobial Polymers in the Antibiotic Resistance Crsis[J]. Polym Bull, 2019,10:149-162.  

    4. [4]

      Zasloff M. Antimicrobial Peptides of Multicellular Organisms[J]. Nature, 2002,415(6870):389-395.  

    5. [5]

      ZHOU Xinyu, ZHOU Chuncai. Design, Synthesis and Applications of Antimicrobial Peptides and Antimicrobial Peptide-Mimetic Copolymer[J]. Prog Chem, 2018,30(7):913-920.  

    6. [6]

      Hancock R E, Sahl H. G.. Antimicrobial and Host-defense Peptides as New Anti-infective Therapeutic Strategies[J]. Nat Biotechnol, 2006,24(12):1551-1557.  

    7. [7]

      Alves D, Olivia Pereira M. Mini-review:Antimicrobial Peptides and Enzymes as Promising Candidates to Functionalize Biomaterial Surfaces[J]. Biofouling, 2014,30(4):483-499.  

    8. [8]

      Sun H, Hong Y, Xi Y. Synthesis, Self-assembly, and Biomedical Applications of Antimicrobial Peptide-Polymer Conjugates[J]. Biomacromolecules, 2018,19(6):1701-1720.  

    9. [9]

      Salditt T, Li C, Spaar A. Structure of Antimicrobial Peptides and Lipid Membranes Probed by Interface-Sensitive X-Ray Scattering[J]. Biochim Biophys Acta, 2006,1758(9):1483-1498.  

    10. [10]

      Kazemzadeh-Narbat M, Kindrachuk J, Duan K. Antimicrobial Peptides on Calcium Phosphate-Coated Titanium for the Prevention of Implant-Associated Infections[J]. Biomaterials, 2010,31(36):9519-26.  

    11. [11]

      Nordstrom R, Malmsten M. Delivery Systems for Antimicrobial Peptides[J]. Adv Colloid Interface Sci, 2017,242:17-34.  

    12. [12]

      Cheng H, Yue K, Kazemzadeh-Narbat M. Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis[J]. ACS Appl Mater Interfaces, 2017,9(13):11428-11439.  

    13. [13]

      ZHAO Mingqi, HUANG Weipin, HU Mi. Functional-Polymer-Based Coatings for Biomedical Materials' Surface[J]. Mater Rep, 2019,33(1):27-39.  

    14. [14]

      Shukla A, Fleming K E, Chuang H F. Controlling the Release of Peptide Antimicrobial Agents from Surfaces[J]. Biomaterials, 2010,31(8):2348-2357.  

    15. [15]

      Li B, Jiang B, Boyce B M. Multilayer Polypeptide Nanoscale Coatings Incorporating IL-12 for the Prevention of Biomedical Device-Associated Infections[J]. Biomaterials, 2009,30(13):2552-2558.  

    16. [16]

      Costa F, Carvalho I F, Montelaro R C. Covalent Immobilization of Antimicrobial Peptides (AMPs) onto Biomaterial Surfaces[J]. Acta Biomater, 2011,7(4):1431-1440.  

    17. [17]

      Onaizi S A, Leong S S. Tethering Antimicrobial Peptides:Current Status and Potential Challenges[J]. Biotechnol Adv, 2011,29(1):67-74.  

    18. [18]

      TANG Xin, MAO Xinfang, MA Binyun. Antimicrobial Peptides:Current Status and Future Challenges[J]. China Biotechnol, 2019,39(8):86-94.  

    19. [19]

      Godoy-Gallardo M, Mas-Moruno C, Yu K. Antibacterial Properties of hLf1-11 Peptide onto Titanium Surfaces:A Comparison Study Between Silanization and Surface Initiated Polymerization[J]. Biomacromolecules, 2015,16(2):483-496.  

    20. [20]

      Wei T, Yu Q, Chen H. Responsive and Synergistic Antibacterial Coatings:Fighting against Bacteria in a Smart and Effective Way[J]. Adv Healthcare Mater, 2019,8e1801381.  

    21. [21]

      Ding X, Duan S, Ding X. Versatile Antibacterial Materials:An Emerging Arsenal for Combatting Bacterial Pathogens[J]. Adv Funct Mater, 20181802140.  

    22. [22]

      YU Qian, CHEN Hong. Smart Antibacterial Surfaces with Switchable Function to Kill and Release Bacteria[J]. Acta Polym Sin, 2020,51(4):319-325.  

    23. [23]

      Yan S, Luan S, Shi H. Hierarchical Polymer Brushes with Dominant Antibacterial Mechanisms Switching from Bactericidal to Bacteria Repellent[J]. Biomacromolecules, 2016,17:1696-1704.  

    24. [24]

      Wei T, Tang Z, Yu Q. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities[J]. ACS Appl Mater Interfaces, 2017,9:37511-37523.  

    25. [25]

      CAO Biyu, SUN Xiuhua, GAO Changlu. Research Progress in Antibacterial Materials with Convertible Functions Between Bacteria-Killing and Foul-Releasing[J]. Mod Chem Ind, 2019,39:29-32.  

    26. [26]

      Blum A P, Kammeyer J K, Rush AM. Stimuli-Responsive Nanomaterials for Biomedical Applications[J]. J Am Chem Soc, 2015,137:2140-2154.  

    27. [27]

      Wei T, Yu Q, Zhan W. A Smart Antibacterial Surface for the On-demand Killing and Releasing of Bacteria[J]. Adv Healthcare Mater, 2016,5(4):449-456.  

    28. [28]

      Albright V, Zhuk I, Wang Y. Self-defensive Antibiotic-Loaded Layer-by-layer Coatings:Imaging of Localized Bacterial Acidification and pH-Triggering of Antibiotic Release[J]. Acta Biomater, 2017,61:66-74.  

    29. [29]

      Traba C, Liang J F. Bacteria Responsive Antibacterial Surfaces for Indwelling Device Infections[J]. J Control Release, 2015,198:18-25.  

    30. [30]

      Pavlukhina S, Lu Y, Patimetha A. Polymer Multilayers with pH-Triggered Release of Antibacterial Agents[J]. Biomacromolecules, 2010,11(12):3448-3456.  

    31. [31]

      Hu Y, Gong X, Zhang J. Activated Charge-Reversal Polymeric Nano-system:The Promising Strategy in Drug Delivery for Cancer Therapy[J]. Polymers, 2016,899.  

    32. [32]

      Zhang J, Zhu W, Xin B. Development of an Antibacterial Surface with Self-defensive and pH-Responsive Function[J]. Biomater Sci, 2019,7:3795-3800.  

    33. [33]

      Zhang , Y , Zhang L, Li B. Enhancement in Sustained Release of Antimicrobial Peptide from Dual-Diameter-Structured TiO2 Nanotubes for Long-Lasting Antibacterial Activity and Cytocompatibility[J]. ACS Appl Mater Interfaces, 2017,9(11):9449-9461.  

    34. [34]

      Chen J, Shi X, Zhu Y. On-Demand Storage and Release of Antimicrobial Peptides Using Pandora's Box-Like Nanotubes Gated with a Bacterial Infection-Responsive Polymer[J]. Theranostics, 2020,10(1):109-122.  

    35. [35]

      WANG Yingjun, HUANG Xuelian, CHEN Junjian. Bacterial Infection-Microenvironment Responsive Polymeric Materials for the Treatment of Bacterial Infectious Aiseases:A Review[J]. Mater Rep, 2019,33(1):5-15.  

    36. [36]

      Cado G, Aslam R, Séon L. Self-defensive Biomaterial Coating Against Bacteria and Yeasts:Polysaccharide Multilayer Film with Embedded Antimicrobial Peptide[J]. Adv Funct Mater, 2013,23(38):4801-4809.  

    37. [37]

      Li X, Wu B, Chen H. Recent Developments in Smart Antibacterial Surfaces to Inhibit Biofilm Formation and Bacterial Infections[J]. J Mater Chem B, 2018,6(26):4274-4292.  

    38. [38]

      Rai A, Pinto S, Evangelista M B. High-density Antimicrobial Peptide Coating with Broad Activity and Low Cytotoxicity Against Human Cells[J]. Acta Biomater, 2016,33:64-77.  

    39. [39]

      Yu Q, Zhang Y, Wang H. Anti-fouling Bioactive Surfaces[J]. Acta Biomater, 2011,7(4):1550-1557.  

    40. [40]

      Wach J Y, Bonazzi S, Gademann K. Antimicrobial Surfaces Through Natural Product Hybrids[J]. Angew Chem Int Ed, 2008,47(37):7123-7126.  

    41. [41]

      Yu Q, Wu Z, Chen H. Dual-function Antibacterial Surfaces for Biomedical Applications[J]. Acta Biomater, 2015,16:1-13.  

    42. [42]

      Gao G, Lange D, Hilpert K. The Biocompatibility and Biofilm Resistance of Implant Coatings Based on Hydrophilic Polymer Brushes Conjugated with Antimicrobial Peptides[J]. Biomaterials, 2011,32(16):3899-3909.  

    43. [43]

      Yu K, Lo J C, Yan M. Anti-adhesive Antimicrobial Peptide Coating Prevents Catheter Associated Infection in a Mouse Urinary Infection Model[J]. Biomaterials, 2017,116:69-81.  

    44. [44]

      Gao G, Yu K, Kindrachuk J. Antibacterial Surfaces Based on Polymer Brushes:Investigation on the Influence of Brush Properties on Antimicrobial Peptide Immobilization and Antimicrobial Activity[J]. Biomacromolecules, 2011,12(10):3715-3727.  

    45. [45]

      Cleophas R T, Sjollema J, Busscher H J. Characterization and Activity of an Immobilized Antimicrobial Peptide Containing Bactericidal PEG-Hydrogel[J]. Biomacromolecules, 2014,15(9):3390-3395.  

    46. [46]

      Liu H, Liu X, Meng J. Hydrophobic Interaction-Mediated Capture and Release of Cancer Cells on Thermoresponsive Nanostructured Surfaces[J]. Adv Mater, 2013,25(6):922-927.  

    47. [47]

      Yamato M, Akiyama Y, Kobayashi J. Temperature-Responsive Cell Culture Surfaces for Regenerative Medicine with Cell Sheet Engineering[J]. Prog Polym Sci, 2007,32(8/9):1123-1133.  

    48. [48]

      Dworak A, Utrata-Wesolek A, Szweda D. Poly[tri(ethylene glycol) Ethyl Ether Methacrylate]-Coated Surfaces for Controlled Fibroblasts Culturing[J]. ACS Appl Mater Interfaces, 2013,5(6):2197-2207.  

    49. [49]

      Moroni L, Klein G M, Benetti E M. Polymer Brush Coatings Regulating Cell Behavior:Passive Interfaces Turn into Active[J]. Acta Biomater, 2014,10(6):2367-2378.  

    50. [50]

      Lutz J F. Thermo-switchable Materials Prepared Using the OEGMA-Platform[J]. Adv Mater, 2011,23(19):2237-2243.  

    51. [51]

      Yu Q, Ista L K, Lopez G P. Nanopatterned Antimicrobial Enzymatic Surfaces Combining Biocidal and Fouling Release Properties[J]. Nanoscale, 2014,6(9):4750-4757.  

    52. [52]

      Wang X, Yan S, Song L. Temperature-Responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency[J]. ACS Appl Mater Interfaces, 2017,9:40930-40939.  

    53. [53]

      Laloyaux X, Fautre E, Blin T. Temperature-Responsive Polymer Brushes Switching from Bactericidal to Cell-Repellent[J]. Adv Mater, 2010,22(44):5024-5028.  

    54. [54]

      Zhan J, Wang L, Zhu Y. Temperature-Controlled Reversible Exposure and Hiding of Antimicrobial Peptides on an Implant for Killing Bacteria at Room Temperature and Improving Biocompatibility in Vivo[J]. ACS Appl Mater Interfaces, 2018,10(42):35830-35837.  

    55. [55]

      Yan S, Shi H, Song L. Nonleaching Bacteria-Responsive Antibacterial Surface Based on a Unique Hierarchical Architecture[J]. ACS Appl Mater Interfaces, 2016,8(37):24471-24481.  

    56. [56]

      Zhang J, Zhou R, Wang H. Bacterial Activation of Surface-Tethered Antimicrobial Peptides for the Facile Construction of a Surface with Self-defense[J]. Appl Surf Sci, 2019,497143480.  

    57. [57]

      QIAN Yuxin, ZHANG Danfeng, WU Yueming. The Design, Synthesis and Biological Activity Atudy of Nylon-3 Polymers as Mimics of Host Defense Peptides[J]. Acta Polym Sin, 2016,10:1300-1311.  

    58. [58]

      PAN Shuai, TANG Jianbin. Polymeric Antimicrobial Agents Mimicking the Natural Antimicrobial Peptides[J]. Polym Bull, 2011,12:43-49.  

  • 加载中
    1. [1]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    4. [4]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    5. [5]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    6. [6]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    7. [7]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    8. [8]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    14. [14]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    19. [19]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(76)
  • Abstract views(2593)
  • HTML views(925)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return