Citation: LI Jianxun, WANG Yuzhen, WU Cuiling, YANG Xia, SHAN Jihao, FAN Bei. Simultaneous Determination of Amitraz and Their Metabolites in Pork and Porcine Liver by Enhanced Matrix Removal-Lipid Column Purified/Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 969-976. doi: 10.11944/j.issn.1000-0518.2020.08.200134 shu

Simultaneous Determination of Amitraz and Their Metabolites in Pork and Porcine Liver by Enhanced Matrix Removal-Lipid Column Purified/Liquid Chromatography-Tandem Mass Spectrometry

  • Corresponding author: SHAN Jihao, shanjihao2007@163.com FAN Bei, fanbei517@163.com
  • Received Date: 8 May 2020
    Revised Date: 2 June 2020
    Accepted Date: 9 June 2020

    Fund Project: the National Major R & D Program Funding No. 2018YFF0212800the National Major R & D Program Funding(No.2018YFF0212800, No.2018YFF0212801)the National Major R & D Program Funding No.2018YFF0212801

Figures(6)

  • An analytical method based on enhanced matrix removal(EMR)-Lipid column purified/liquid chromatography-tandem mass spectrometry was developed for the determination of amitraz (AMZ) and their metabolites 2, 4-xylidine (DMA), semiamitraz (DMPF) and N-(2, 4-dimethylphenyl)formamide (DMF) residues in pork and porcine liver. The pork and porcine liver samples were precipitated with acetonitrile and salting out with extraction. The acetonitrile supernatant was cleaned up with Captiva EMR-Lipid cartridge, and then the supernatant solution was filtered through a nylon membrane into a glass LC sample vial for LC-MS/MS analysis. The solution was separated on an Agilent ZORBAX Eclipse Plus C18 column (50 mm×2.1mm, 1.8 μm) with 0.1% formic acid acetonitrile-0.1% formic acid solution as mobile phases by gradient elution, then determined by LC-MS/MS with electrospray ionization (ESI) in positive ion scanning mode under multiple reaction monitoring (MRM) mode. The results show that the linear range of AMZ, DMA in pig liver and pork is 1~200 μg/kg, while the linear range of DMPF and DMF is 0.1~200 μg/kg, The correlation coefficient (R2) is greater than 0.991; The quantitative limits of AMZ, DMA, DMPF and DMF are 0.6, 0.6, 0.05, 0.05 μg/kg, respectively; The spiked recoveries at four levels of 0.1, 1, 5, and 50 μg/kg are in the range of 60.2%~127.4% with relative standard deviations (RSD) lower than 12%. This method provides an easy and fast detection technique for the analysis of AMZ and its metabolites residues in pork and porcine liver samples.
  • 加载中
    1. [1]

      Zheng W, Park J A, Abd EI-Aty A M. Bithionol Residue Analysis in Animal-Derived Food Products by an Effective and Rugged Extraction Method Coupled with Liquid Chromatography Tandem Mass Spectrometry[J]. J Chromatogr B, 2017,1064:100-108. doi: 10.1016/j.jchromb.2017.08.035

    2. [2]

      Shawky A, Charles O K. Inhibition of Monoamine Oxidase by the Pesticide Chlordimeform and Related Compounds[J]. Nature, 1973,242(5397):417-418. doi: 10.1038/242417a0

    3. [3]

      Hepperle J, Mack D, Sigalov I. Analysis of "Amitraz (sum)" in Pears with Incurred Residues Comparison of the Approach Covering the Individual Metabolites via LC MS/MS with the Approach Involving Cleavage to 2, 4-Dimethylaniline[J]. Food Chem, 2015,166:240-247. doi: 10.1016/j.foodchem.2014.06.003

    4. [4]

      Young F M. Effects of the Insecticide Amitraz, an Alpha 2-Adrenergic Receptor Agonist, on Human Luteinized Granulosa Cells[J]. Hum Reprod, 2005,20(11):3018-3025. doi: 10.1093/humrep/dei194

    5. [5]

      Hollingworth R M. Chemistry, Biological Activity, and Uses of Formamidine Pesticides[J]. Environ Health Persp, 1976,14:57-69. doi: 10.1289/ehp.761457

    6. [6]

      Zheng W, Park J A, Abd EI-Aty A M. Development and Validation of Modified QuEChERS Method Coupled with LC-MS/MS for Simultaneous Determination of Cymiazole, Fipronil, Coumaphos, Fluvalinate, Amitraz, and Its Metabolite in Various Types of Honey and Royal Jelly[J]. J Chromatogr B, 2018,1072:60-69. doi: 10.1016/j.jchromb.2017.11.011

    7. [7]

      Peter D E, Julian D G. Action of Formamidine Pesticides on Octopamine Receptors[J]. Nature, 1980,287(5777):60-62. doi: 10.1038/287060a0

    8. [8]

      Amoli J S, Hasan J, Hejazy M. Determination of Amitraz Residue by Headspace Gas Chromatography in Honey and Beeswax Samples from Iran[J]. Am J Food Technol, 2009,4(1):56-59. doi: 10.3923/ajft.2009.56.59

    9. [9]

      Dong C, Dinu C Z. Molecular Trucks and Complementary Tracks for Bionanotechnological Applications[J]. Curr Opin Biotechnol, 2013,24(4):612-619. doi: 10.1016/j.copbio.2013.01.007

    10. [10]

      Osano O, Adniraal W, Klamer H J C. Comparative Toxic and Genotoxic Effects of Chloroacetanilides, Formamidines and Their Degradation Products on Vibrio fischeri and Chironomus riparius[J]. Environ Pollut, 2002,119(2):0-202.  

    11. [11]

      Chaitanya P V, Sonia B, Ramesh Y. Amitraz Poisoning[J]. Indian J Pediatr, 2013,80(4):349-350. doi: 10.1007/s12098-012-0772-2

    12. [12]

      Duleeka W K, Chris M, Ravindra F. Suicide in Sri Lanka 1975-2012:Age, Period and Cohort Analysis of Police and Hospital Data[J]. BMC Public Health, 2014,14(1)839. doi: 10.1186/1471-2458-14-839

    13. [13]

      YANG Rong. Gas Chromatographic Determination of Trace Amitraz in Tea[J]. Food Sci Technol, 2006,31(2):94-95.  

    14. [14]

      DAI Xiaobo, CAO Peng, WANG Lizhong. Determine on Amitraz Residual in Water by Hollow Fiber Liquid-Phase Micro-extraction-Gas Chromatography[J]. J Anhui Agric Sci, 2010,38(6):2772-2773, 2785.  

    15. [15]

      YI Xionghai, YANG Huiqin, GUO Dehua. Determination of Acaricides Amitraz and Its Metabolite Residues in Eel-GC-MS Method[J]. J Shanghai Jiaotong Univ, 2009,27(5):524-526.  

    16. [16]

      XUE Xiaofeng, ZHAO Jing, QIU Jing. Simultaneous Determination of Amitraz and Its Metabolite (2, 4-xylidine)Residues in Honey by Gas Chromatography-Mass Spectrometry[J]. Mod Sci Instrum, 2005(1):65-67.  

    17. [17]

      GUO Jingqi, XU Jiangping, GUO Hao. Detection of Amitraz Pesticide Residues in Paddy Field Water Using GC-MS[J]. Chem Bull, 2014,77(1):90-92.  

    18. [18]

      YANG Yuan, SHI Lei, ZHANG Kaichun. Determination of Semiamitraz Residue in Fruits by Solid Phase Extraction-High Performance Liquid Chromatography[J]. Chinese J Anal Chem, 2010,38(9):1342-1344.  

    19. [19]

      Pan J Y, Yu Z Q. Isolation and Characterization of Hainantoxin-II, A New Neurotoxic Peptide from the Chinese Bird Spider (Haplopelma hainanum)[J]. Zool Res, 2010,31(6):570-574.  

    20. [20]

      Nilgun T, Carla S, Marinel L F. Determination of Amitraz and Its Transformation Products in Pears by Ethyl Acetate Extraction and Liquid Chromatography Tandem Mass Spectrometry[J]. J Chromatogr A, 2009,1216(15):3138-3146. doi: 10.1016/j.chroma.2009.01.099

    21. [21]

      Yolanda P, Marinel L F, Nilun T. Rapid and Sensitive Ultra-High-Pressure Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry for the Quantification of Amitraz and Identification of Its Degradation Products in Fruits[J]. J Chromatogr A, 2008,1203(1):36-46.  

    22. [22]

      Kabashima T, Yu Z Q, Tang C H. A Selective Fluorescence Reaction for Peptides and Chromatographic Analysis[J]. Peptides, 2008,29(3):0-363. doi: 10.1016/j.peptides.2007.11.014

    23. [23]

      Chao K G, Curtis S. Investigation of the Photocatalytic Activity of TiO2 Polyoxometalate Systems for the Oxidation of Methanol[J]. J Mol Catal A Chem, 2007,262(1/2):185-189.  

    24. [24]

      Guo H, Zhang P, Wang J W. Determination of Amitraz and its Metabolites in Whole Blood Using Solid-Phase Extraction and Liquid Chromatography Tandem Mass Spectrometry[J]. J Chromatogr B, 2014(951/952):89-95.  

    25. [25]

      GUO Hao, GUO Dongdong, LI Heng. Detection of Amitraz and Its Metabolites in Pond-water Using SPE/LC-MS/MS[J]. J Instrum Anal, 2014,33(12):1416-1420.  

    26. [26]

      GAO Xue, LIU Wenwen, WANG Xingmin. Determination of Amitraz, Chlordimeform and Their Metabolitesin Blood by Solid Supported Liquid Extraction and Gas Chromatography-Tandem Mass Spectrometry[J]. J Instrum Anal, 2017,36(4):539-543.  

    27. [27]

      HOU Jianbo, XIE Wen, ZENG Ganning. Simultaneous Determination of Amitraz and Its Metabolites in Royal Jelly by HPLC-MS/MS[J]. J Chinese Mass Spectr Soc, 2019,40(2):41-48.  

    28. [28]

      HUANG Juan, GUI Qianwen, GAO Ling. Determination of Amitraz and Its Metabolites Invegetables and Fruits by High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese J Chromatogr, 2019,37(1):2-7.  

    29. [29]

      Han L J, Matarrita J, Sapozhnikova Y. Evaluation of a Recent Product to Remove Lipids and other Matrix Co-extractives in the Analysis of Pesticide Residues and Environmental Contaminants in Foods[J]. J Chromatogr A, 2016,1449:17-29. doi: 10.1016/j.chroma.2016.04.052

    30. [30]

      Zhao L M, Derick L. Agilent Technologies, Multiresidue Analysis of Veterinary Drugs in Bovine Liver by LC/MS/MS[J]. Agilent Technol Appl Note, 2017:11-14.  

    31. [31]

      Anastassiades M, Lehotay S J, Tajnbaher D. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and "Dispersive Solid-Phase Extraction" for the Determination of Pesticide Residues in Produce[J]. J AOAC Int, 2003,86(2):412-431. doi: 10.1093/jaoac/86.2.412

    32. [32]

      CAI Zhibin, SUN Jinying, XU Xiaoyan. QuEChERS Purification with HPLC-MS/MS for Rapid Confirmationin Acute Clenbuterol Poisoning Case Sample[J]. Chinese J Appl Chem, 2019,36(7):832-838.  

    33. [33]

      Xu J Z, Miao J J, Lin Hong. Determination of Amitraz and 2, 4-Dimethylaniline Residues in Honey by Using LC with UV Detection and MS/MS[J]. J Sep Sci, 2009,32(23/24):4020-4024.  

    34. [34]

      Korta E, Bakkali A, Berrueta L A. Determination of Amitraz and other Acaricide Residues in Beeswax[J]. Anal Chim Acta, 2003,475(1/2):97-103.  

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    5. [5]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    6. [6]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    7. [7]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    13. [13]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    20. [20]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

Metrics
  • PDF Downloads(3)
  • Abstract views(824)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return