Citation: DUAN Jinchi, QI Yunxia, SHI Chengying, ZHAO Qi, LIU Baijun, SUN Zhaoyan, XU Yiquan, HU Wei, ZHANG Niaona. Electron Beam Radiation Modification of Polyethylene Thermal Conductive Composites[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 896-903. doi: 10.11944/j.issn.1000-0518.2020.08.200050 shu

Electron Beam Radiation Modification of Polyethylene Thermal Conductive Composites

  • Corresponding author: HU Wei, huw884@nenu.edu.cn ZHANG Niaona, zhangniaona@163.com
  • Received Date: 24 February 2020
    Revised Date: 20 March 2020
    Accepted Date: 21 April 2020

    Fund Project: Supported by National Natural Science Foundation of China(No.21404013, No.5187306); Science and Technology Development Plan of Jilin Province, China(No.20200401036GX), "13th Five Year Plan" Science and Technology Project of Jilin Provincial Department of Education, China(No.JJKH20191297KJ), Changchun New Area "Changbai Huigu" Talent Project(No.9-2020004)"13th Five Year Plan" Science and Technology Project of Jilin Provincial Department of Education, China JJKH20191297KJChangchun New Area "Changbai Huigu" Talent Project 9-2020004Science and Technology Development Plan of Jilin Province, China 20200401036GXNational Natural Science Foundation of China 21404013National Natural Science Foundation of China 5187306

Figures(6)

  • In this study, the composites (PE-Al-Si) with high thermal conductivity and mechanical properties were obtained by compounding low density polyethylene (LDPE), alumina (Al2O3) and SiO2 nanoparticles through melt blending, and then further modification through electron beam radiation. When the mass fraction of SiO2 nanoparticles is 1% and the electron beam radiation (EB) dose is 120 kGy, the thermal conductivity of PE-Al-Si increases from 0.624 W/(m·K) to 0.759 W/(m·K), which is 22% increase compared with the composites without SiO2 (PE-Al). The tensile strength of PE-Al-Si is increased by 17% compared with that of PE-Al. The results prove that SiO2 improves the mechanical properties, the radiation efficiency and the thermal conductivity of the composites.
  • 加载中
    1. [1]

      Anithambigai P, Shanmugan S, Mutharasu D. Study on Thermal Performance of High Power LED Employing Aluminum Filled Epoxy Composite as Thermal Interface Material[J]. Microelectron J, 2014,45(12):1726-1733. doi: 10.1016/j.mejo.2014.05.011

    2. [2]

      Henry A, Chen G. Anomalous Heat Conduction in Polyethylene Chains:Theory and Molecular Dynamics Simulations[J]. Phys Rev B, 2009,79(14)144305. doi: 10.1103/PhysRevB.79.144305

    3. [3]

      Fan J, Xu S. Aluminum Oxide Particles/Silicon Carbide Whiskers' Synergistic Effect on Thermal Conductivity of High-Density Polyethylene Composites[J]. Iran Polym J, 2018,27(5):339-347. doi: 10.1007/s13726-018-0614-9

    4. [4]

      Ouyang Y, Hou G, Bai L. Constructing Continuous Networks by Branched Alumina for Enhanced Thermal Conductivity of Polymer Composites[J]. Compos Sci Technol, 2018,165:307-313. doi: 10.1016/j.compscitech.2018.07.019

    5. [5]

      Evgin T, Koca H D, Horny N. Effect of Aspect Ratio on Thermal Conductivity of High Density Polyethylene/Multi-Walled Carbon Nanotubes Nanocomposites[J]. Compos Part A:Appl Sci Manuf, 2016,82:208-213. doi: 10.1016/j.compositesa.2015.12.013

    6. [6]

      Pedrazzoli D, Pegoretti A, Thomann R. Toughening Linear Low-Density Polyethylene with Halloysite Nanotubes[J]. Polym Composit, 2015,36(5):869-883. doi: 10.1002/pc.23006

    7. [7]

      Zhang Y, Yu J, Zhou C. Preparation, Morphology, and Adhesive and Mechanical Properties of Ultrahigh-Molecular-Weight Polyethylene/SiO2 Nanocomposite Fibers[J]. Polym Compos, 2010,31(4):684-690.  

    8. [8]

      Sahyoun J, Crepet A, Gouanve F. Diffusion Mechanism of Byproducts Resulting from the Peroxide Crosslinking of Polyethylene[J]. J Appl Polym Sci, 2017,134(9).  

    9. [9]

      Liu D, Pourrahimi A M, Pallon L K H. Interactions Between a Phenolic Antioxidant, Moisture, Peroxide and Crosslinking By-Products with Metal Oxide Nanoparticles in Branched Polyethylene[J]. Polym Degrad Stab, 2016,125:21-32. doi: 10.1016/j.polymdegradstab.2015.12.014

    10. [10]

      Kabanov V, Feldman V, Ershov B. Radiation Chemistry of Polymers[J]. High Energy Chem, 2009,43(1):1-18. doi: 10.1134/S0018143909010019

    11. [11]

      Kolanthai E, Bose S, Bhagyashree K S. Graphene Scavenges Free Radicals to Synergistically Enhance Structural Properties in a Gamma-Irradiated Polyethylene Composite Through Enhanced Interfacial Interactions[J]. Phys Chem Chem Phys, 2015,17(35):22900-22910. doi: 10.1039/C5CP02609A

    12. [12]

      Chen P Y, Chen C C, Harmon J P. The Effect of Gamma Radiation on Hardness Evolution in High Density Polyethylene at Elevated Temperatures[J]. Mater Chem Phys, 2014,146(3):369-373.  

    13. [13]

      Chen Y, Yue W, Bian Z. Preparation and Properties of KH550-Al2O3/PI-EP Nanocomposite Material[J]. Iran Polym J, 2013,22(5):377-383. doi: 10.1007/s13726-013-0137-3

    14. [14]

      Anithambigai P, Chakravarthii M K D, Mutharasu D. Potential Thermally Conductive Alumina Filled Epoxy Composite for Thermal Management of High Power LEDs[J]. J Mater Sci:Mater Electron, 2017,28(1):856-867. doi: 10.1007/s10854-016-5600-4

    15. [15]

      Narkis M, Raiter I, Shkolnik S. Structure and Tensile Behavior of Irradiation-and Peroxide-Crosslinked Polyethylenes[J]. J Macromol Sci Phys, 1987,26(1):37-58. doi: 10.1080/00222348708248057

    16. [16]

      Stephen H. Electrical Properties of Composites in the Vicinity of the Percolation Threshold[J]. J Appl Polym Sci, 1999,72(12):1573-1582. doi: 10.1002/(SICI)1097-4628(19990620)72:12<1573::AID-APP10>3.0.CO;2-6

    17. [17]

      Lai S K. Interface Trap Generation in Silicon Dioxide When Electrons are Captured by Trapped Holes[J]. J Appl Phys, ,54(5):2540-2546. doi: 10.1063/1.332323

    18. [18]

      DiMaria D J. Correlation of Trap Creation with Electron Heating in Silicon Dioxide[J]. Appl Phys Lett, 1987,51(9):655-657. doi: 10.1063/1.98324

    19. [19]

      Zhang J, Li C, Yu C. Large Improvement of Thermal Transport and Mechanical Performance of Polyvinyl Alcohol Composites Based on Interface Enhanced by SiO2 Nanoparticle-Modified-Hexagonal Boron Nitride[J]. Compos Sci Technol, 2019,169:167-175. doi: 10.1016/j.compscitech.2018.11.001

    20. [20]

      Kochetov R, Andritsch T, Lafont U. Thermal Conductivity of Nano-Filled Epoxy Systems[J]. Conference on Electrical Insulation and Dielectric Phenomena, 2009:658-661.  

    21. [21]

      Stelescu M D, Manaila E, Craciun G. New Green Polymeric Composites Based on Hemp and Natural Rubber Processed by Electron Beam Irradiation[J]. Sci World J, 2014,2014:1-13.  

    22. [22]

      Sener A A, Demirhan E. The Investigation of Using Magnesium Hydroxide as a Flame Retardant in the Cable Insulation Material by Cross-Linked Polyethylene[J]. Mater Des, 2008,29(7):1376-1379. doi: 10.1016/j.matdes.2007.05.008

    23. [23]

      Mishra A K, Luyt A S. Effect of Sol-Gel Derived Nano-Silica and Organic Peroxide on the Thermal and Mechanical Properties of Low-Density Polyethylene/Wood Flour Composites[J]. Polym Degrad Stab, 2008,93(1):1-8. doi: 10.1016/j.polymdegradstab.2007.11.006

    24. [24]

      Bikiaris D N, Vassiliou A, Pavlidou E. Compatibilisation Effect of PP-g-MA Copolymer on iPP/SiO2 Nanocomposites Prepared by Melt Mixing[J]. Eur Polym J, 2005,41(9):1965-1978. doi: 10.1016/j.eurpolymj.2005.03.008

    25. [25]

      Dadbin S, Frounchi M, Saeid M H. Molecular Structure and Physical Properties of E-Beam Crosslinked Low-Density Polyethylene for Wire and Cable Insulation Applications[J]. J Appl Polym Sci, 2002,86(8):1959-1969. doi: 10.1002/app.11111

    26. [26]

      Ziaie F, Borhani M, Mirjalili G. Effect of Crystallinity on Electrical Properties of Electron Beam Irradiated LDPE and HDPE[J]. Radiat Phys Chem, 2007,76(11/12):1684-1687.  

    27. [27]

      Sharif J, Aziz S H S A, Hashim K. Radiation Effects on LDPE/EVA Blends[J]. Radiat Phys Chem, 2000,58(2):191-195.  

    28. [28]

      Hassan M A. Effect of Incorporation of Butyl Acrylate-Iron Chelate Resin on the Flammability Properties of Mg (OH)2-LDPE Compositions[J]. Polym-Plast Technol Eng, 2005,43(5):1487-1501. doi: 10.1081/PPT-200030241

    29. [29]

      Xiong L, Xiong D, Jin J. Study on Tribological Properties of Irradiated Crosslinking UHMWPE Nano-Composite[J]. J Bionic Eng, 2009,6(1):7-13. doi: 10.1016/S1672-6529(08)60102-X

    30. [30]

      Zhang Y, Yu J, Chen L. Surface Modification of Ultrahigh-Molecular-Weight Polyethylene Fibers with Coupling Agent During Extraction Process[J]. J Macromol Sci, 2009,48(2):391-404.  

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    19. [19]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(41)
  • Abstract views(1644)
  • HTML views(554)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return