Citation: SONG Shengjie, ZHAO Liu, TONG Huan, ZHAO Peng, MA Kangfu, CHU Yu, CHEN Lidong, CHENG Weiguo. Effect of Polyoxometalate Structure on Catalytic Oxidative Desulfurization Performance of Nano Titanium Silicalite-1 Zeolite[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 952-959. doi: 10.11944/j.issn.1000-0518.2020.08.200046 shu

Effect of Polyoxometalate Structure on Catalytic Oxidative Desulfurization Performance of Nano Titanium Silicalite-1 Zeolite

  • Corresponding author: CHEN Lidong, lidongchhm0809@163.com CHENG Weiguo, wgcheng@ipe.ac.cn
  • Received Date: 18 February 2020
    Revised Date: 19 March 2020
    Accepted Date: 15 April 2020

    Fund Project: the “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No.XDA 21030500the Liaoning Provincial Education Department Serves Local Projects No. LF2019002the Research Project on Undergraduate Teaching Reform of General Higher Education in Liaoning Province No.2018-471the Liaoning Provincial Education Department Serves Local Projects (No. LF2019002), Research Project on Undergraduate Teaching Reform of General Higher Education in Liaoning Province(No.2018-471), Special Project of Teacher Education Center of Liaoning Normal University(No.lsjsjyzx201905) and “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences, Grant(No.XDA 21030500)the Special Project of Teacher Education Center of Liaoning Normal University No. lsjsjyzx201905

Figures(8)

  • Nano titanium silicalite-1 (TS-1) zeolite catalysts loaded with a series of molybdenum-containing polyoxometalate (POM) were synthesized by the impregnation method. These catalysts were characterized by SEM, UV-vis, BET, XRD, 31P MAS-NMR and 29Si MAS-NMR spectroscopy. The characterization results show that the Keggin structure in the catalysts can be remained after calcination or drying under the low temperature, but ammonium molybdate changed into molybdenum trioxide after calcination at 550 ℃. A model of oil (n-octane solution of thiophene, benzothiophene and dibenzothiophene) was used to value catalytic oxidation desulfurization performance of these catalysts. It is found that the oxidative desulfurization efficiencies decrease in the order of Mo-POM (Keggin type) > Mo-POM (Anderson type) > Mo-POM (Dawson type) > molybdenum trioxide. When the reaction conditions are the model of V(simulated oil)=V(ethanol)=10.0 mL, m(catalyst)=0.2 g, n(H2O2):n(S)=10:1, temperature=60 ℃, the desulfurization activity order of sulfur compounds is thiophene > dibenzothiophene > benzothiophene, which is obviously different from that of either TS-1 zeolite or POM. This may be derived from the synergy of the shape selectivity of nano-TS-1 zeolite and the electron cloud density of POM on the oxidation activity of organic sulfur molecules. Furthermore, the Keggin type Mo-POM-TS-1 catalysts show excellent recycling stability. All of which cause Mo-POM (Keggin type)-TS-1 catalysts to become a kind of environmental-friendly catalysts with simple preparation method, high catalytic activity and good stability.
  • 加载中
    1. [1]

      Song C S. An Overview of New Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel[J]. Catal Today, 2003,86(1/2/3/4):211-263. doi: 10.1016/S0920-5861(03)00412-7

    2. [2]

      Li J R, Yang Z, Li S W. Review on Oxidative Desulfurization of Fuel by Supported Heteropolyacid Catalysts[J]. J Ind Eng Chem, 2020,82:1-16. doi: 10.1016/j.jiec.2019.10.020

    3. [3]

      Kong L Y, Li G, Wang X S. Mild Oxidation of Thiophene over TS-1/H2O2[J]. Catal Today, 2004,93(1):341-345. doi: 10.1021/i260068a011

    4. [4]

      Lv Q, Li G, Sun H Y. Synthesis of Hierarchical TS-1 with Convenient Separation and the Application for the Oxidative Desulfurization of Bulky and Small Reactants[J]. Fuel, 2014,130(1):70-75.  

    5. [5]

      Bai R S, Sun Q M, Yue S. Intermediate-Crystallization Promoted Catalytic Activity of Titanosilicate Zeolites[J]. J Mater Chem A, 2018,6(18):87571-8762.  

    6. [6]

      Du S T, Li F, Sun Q M. A Green Surfactant-Assisted Synthesis of Hierarchical TS-1 Zeolites with Excellent Catalytic Properties for Oxidative Desulfurization[J]. Chem Commun, 2016,52(16):3368-3370. doi: 10.1039/C5CC08441E

    7. [7]

      SONG Fangyuan, DING Yong, ZHAO Congchao. Progress in Polyoxometalates-Catalyzed Water Oxidation[J]. Acta Chim Sin, 2014,72(2):133-144.  

    8. [8]

      Xue X L, Zhao W, Ma B C. Efficient Oxidation of Sulfides Catalyzed by a Temperature-Responsive Phase Transfer Catalyst[(C18H37)2(CH3)2N]7PW11O39 with Hydrogen Peroxide[J]. Catal Commun, 2012,29(1):73-76. doi: 10.1016/j.catcom.2012.09.021

    9. [9]

      Lü H Y, Ren W Z, Liao W P. Aerobic Oxidative Desulfurization of Model Diesel Using a B-Type Anderson Catalyst[(C18H37)2N(CH3)2]3Co(OH)6Mo6O18·3H2O[J]. Appl Catal B:Environ, 2013,138(1):79-83. doi: 10.1016/j.apcatb.2013.02.034

    10. [10]

      Chi M Y, Zhu Z G, Sun L l, et al. Construction of Biomimetic Catalysis System Coupling Polyoxometalates with Deep Eutectic Solvents for Selective Aerobic Oxidation Desulfurization[J]. Appl Catal B: Eviron, 2019, 259: 118089.

    11. [11]

      Yan G, Gao R, Gai Z. Oxidative Desulfurization of Model Fuel in the Presence of Molecular Oxygen over Polyoxometalate Based Catalysts Supported on Carbon Nanotubes[J]. Fuel, 2018,224:261-270. doi: 10.1016/j.fuel.2018.03.034

    12. [12]

      MA Kangfu, TONG Huan, LIAO Lin. Efficient Shape-Selective Oxidative Desulfurization by Phosphotungstic Acid/Nanocrystalline Catalyst TS-1[J]. Petrol Process Petrochem, 2019,50(8):38-45. doi: 10.11944/j.issn.1000-0518.2016.03.150339

    13. [13]

      CHEN Lidong, TONG Huan, WANG Xuyang. Preparation of High Activity Oxidative Desulfurization Catalyst with Polycation and Heteropolyanion Keggin Structure[J]. Chinese J Appl Chem, 2017,34(11):1301-1306.  

    14. [14]

      LIU Di, TONG Huan, YUAN Linjie. Preparation of High Activity Oxidative Desulfurization Catalyst from Phosphomolybdic Acid and Titania Silica Nanocomposite[J]. Chinese J Appl Chem, 2018,35(11):1351-1356.  

    15. [15]

      Chen L D, Wang X S, Guo X W. In Situ Nanocrystalline HZSM-5 Zeolites Encaged Heteropoly Acid H3PMo12O40 and Ni Catalyst for Hydroconversion of n-Octane[J]. Chem Eng Sci, 2007,62(16):4469-4478. doi: 10.1016/j.ces.2007.05.013

    16. [16]

      CHEN Weilin, WANG Enbo. Multi-acid Chemistry[M]. 2013, 173(in Chinese).

    17. [17]

      Song W C, Zuo Y, Xiong G. Transformation of SiO2 in Titanium Silicalite-1/SiO2 Extrudates During Tetrapropylammonium Hydroxide Treatment and Improvement of Catalytic Properties for Propylene Epoxidation[J]. Chem Eng J, 2014,253(7):464-471.  

    18. [18]

      Qiu F R, Wang X B, Zhang X F. Preparation and Properties of TS-1 Zeolite and Film Using Sil-1 Nanoparticles as Seeds[J]. Chem Eng J, 2009,147(2):316-322.  

    19. [19]

      Cheneviere Y, Chieux F, Caps V. Synthesis and Catalytic Properties of TS-1 with Mesoporous/Microporous Hierarchical Structures Obtained in the Presence of Amphiphilic Organosilanes[J]. J Catal, 2010,269(1):161-168. doi: 10.1016/j.jcat.2009.11.003

    20. [20]

      Mandal R K, radhan S K. Optimized Enhanced Photodegradation Activity of Sintered Molybdenum Oxide: A Morphological Hierarchy in Wastewater Treatment[J]. Mater Res Bull, 2020, 124: 110760.

    21. [21]

      Deng Y Q, Yin S F, Au C T. Preparation of Nanosized Silicalite-1 and Its Application in Vapor-Phase Beckmann Rearrangement of Cyclohexanone Oxime[J]. Ind Eng Chem Res, 2012,51(28):9492-9499. doi: 10.1021/ie3001277

    22. [22]

      Levebyre F. 31P MAS-NMR Study of H3PW12O40 Supported on Silica:Formation of (SiOH2+)(H2PW12O40)-[J]. J Chem Soc Chem Commun, 1992(10):756-757. doi: 10.1039/C39920000756

    23. [23]

      Li H, Lei Q, Zhang X. Nitrogen-Incorporated TS-1 Zeolite:Synthesis, Characterization and Application in the Epoxidation of Propylene[J]. Micropor Mesopor Mater, 2012,147(1):110-116. doi: 10.1016/j.micromeso.2011.05.035

    24. [24]

      Tekla J, Tarach K A, Olejniczak Z. Effective Hierarchization of TS-1 and Its Catalytic Performance in Cyclohexene Epoxidation[J]. Micropor Mesopor Mater, 2016,233:16-25. doi: 10.1016/j.micromeso.2016.06.031

    25. [25]

      Chen N Y, Garwood W E. Industrial Application of Shape-Selective Catalysis[J]. Catal Rev Sci Eng, 1988,28(2/3):185-264. doi: 10.1080/01614948608082251

    26. [26]

      Muñoz M, Romanelli G, Botto I L. Al13[X Mo/WOn] (X=Al, Co, V, P) Composites as Catalysts in Clean Oxidation of Aromatic Sulfides[J]. Appl Catal B:Environ, 2010,100(1):254-263.  

  • 加载中
    1. [1]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    2. [2]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    3. [3]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    10. [10]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    14. [14]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(6)
  • Abstract views(852)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return