Improving the Electrocatalytic Activity of La2NiO4+δ Cathode by Surface Modification with Conformal Heterojunction
- Corresponding author: MENG Junling, mengjunling@ciac.ac.cn LIU Xiaojuan, lxjuan@ciac.ac.cn
Citation:
WEI Zhenye, MENG Junling, WANG Haocong, ZHANG Wenwen, LIU Xiaojuan, MENG Jian. Improving the Electrocatalytic Activity of La2NiO4+δ Cathode by Surface Modification with Conformal Heterojunction[J]. Chinese Journal of Applied Chemistry,
;2020, 37(8): 939-951.
doi:
10.11944/j.issn.1000-0518.2020.08.200044
Steele B C H, Heinzel A. Materials for Fuel-Cell Technologies[J]. Nature, 2001,414(6861):345-352. doi: 10.1038/35104620
Ormerod R M. Solid Oxide Fuel Cells[J]. Chem Soc Rev, 2003,32(1):17-18. doi: 10.1039/b105764m
Shao Z P, Haile S M. A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells[J]. Mater Sustainable Energy, 2011,431(9):255-258. doi: 10.1038/nature02863
Duan C, Hook D, Chen Y. Zr and Y Co-doped Perovskite as a Stable, High Performance Cathode for Solid Oxide Fuel Cells Operating Below 500℃[J]. Environ Sci, 2017,10(1):176-182.
Lashtabeg A, Skinner S J. Solid Oxide Fuel Cells-A Challenge for Materials Chemists[J]. J Mater Chem, 2006,16(31):3161-3170. doi: 10.1039/B603620A
Liu Q, Dong X H, Xia G L. A Novel Electrode Material for Symmetrical SOFCs[J]. Adv Mater, 2010,22(48):5478-5482. doi: 10.1002/adma.201001044
Dulli H, Dowben P A, Liou S H. Surface Segregation and Restructuring of Colossal-Magnetoresistant Manganese Perovskites La0.65Sr0.35MnO3[J]. Phys Rev B, 2000,62(22):R14629-R14632. doi: 10.1103/PhysRevB.62.R14629
Cai Z, Kubicek M, Fleig J. Chemical Heterogeneities on La0.6Sr0.4CoO3-delta Thin Films-correlations to Cathode Surface Activity and Stability[J]. Chem Mater, 2012,24(6):1116-1127. doi: 10.1021/cm203501u
Lee W, Han J W, Chen Y. Cation Size Mismatch and Charge Interactions Drive Dopant Segregation at the Surfaces of Manganite Perovskites[J]. J Am Chem Soc, 2013,135(21):7909-7925. doi: 10.1021/ja3125349
Tellez H, Druce J, Kilner J A. Relating Surface Chemistry and Oxygen Surface Exchange in LnBaCo2O5+δ Air Electrodes[J]. Chem Mater, 2015,182:145-157.
Sase M, Hermes F, Yashiro K. Enhancement of Oxygen Surface Exchange at the Hetero-interface of (La, Sr)CoO3/(La, Sr)2CoO4 with PLD-Layered Films[J]. J Electrochem Soc, 2008,155(8):B793-B797. doi: 10.1149/1.2928612
Yoon J, Cho S, Kim J H. Vertically Aligned Nanocomposite Thin Films as a Cathode/Electrolyte Interface Layer for Thin-Film Solid-Oxide Fuel Cells[J]. Adv Funct Mater, 2009,19(24):3868-3873. doi: 10.1002/adfm.200901338
Crumlin E J, Mutoro E, Ahn S J. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells[J]. J Phys Chem Lett, 2010,1(21):3149-3155. doi: 10.1021/jz101217d
Lynch M E, Yang L, Qin W. Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ Durability and Surface Electrocatalytic Activity by La0.85Sr0.15MnO3±δ Investigated Using a New Test Electrode Platform[J]. Energy Environ Sci, 2011,4(6):2249-2258. doi: 10.1039/c1ee01188j
Ma W, Kim J J, Tsvetkov N. Vertically Aligned Nanocomposite La0.8Sr0.2CoO3/(La0.5Sr0.5)2CoO4 Cathodes-Electronic Structure, Surface Chemistry and Oxygen Reduction Kinetics[J]. J Mater Chem A, 2015,3(1):207-219.
Choi H J, Bae K, Grieshammer S. Surface Tuning of Solid Oxide Fuel Cell Cathode by Atomic Layer Deposition[J]. Adv Energy Mater, 2018,8(33):1802506-1802514. doi: 10.1002/aenm.201802506
Sase M, Yashiro K, Sato K. Enhancement of Oxygen Exchange at the Hetero Interface of (La, Sr)CoO3/(La, Sr)2CoO4 in Composite Ceramics[J]. Solid State Ionics, 2008,178(35/36):1843-1852.
Han J W, Yildiz B. Mechanism for Enhanced Oxygen Reduction Kinetics at the (La, Sr)CoO3-δ/(La, Sr)2CoO4+δ Hetero-Interface[J]. Energy Environ Sci, 2012,5(9):8598-8607. doi: 10.1039/c2ee03592h
Chen Y, Cai Z, Kuru Y. Electronic Activation of Cathode Superlattices at Elevated Temperatures-Source of Markedly Accelerated Oxygen Reduction Kinetics[J]. Adv Energy Mater, 2013,3(9):1221-1229. doi: 10.1002/aenm.201300025
Kushima A, Yildiz B. Oxygen Ion Diffusivity in Strained Yttria Stabilized Zirconia:Where is the Fastest Strain?[J]. J Mater Chem, 2010,20(23):4809-4819. doi: 10.1039/c000259c
Li X, Benedek N A. Enhancement of Ionic Transport in Complex Oxides Through Soft Lattice Modes and Epitaxial Strain[J]. Chem Mater, 2015,27(7):2647-2652. doi: 10.1021/acs.chemmater.5b00445
Halat D M, Dervişlu R, Kim G. Probing Oxide-Ion Mobility in the Mixed Ionic-Electronic Conductor La2NiO4+δ by Solid-State O-17 MAS NMR Spectroscopy[J]. J Am Chem Soc, 2016,138(36):11958-11969. doi: 10.1021/jacs.6b07348
Gu X K, Carneiro J S A, Samira S. Efficient Oxygen Electrocatalysis by Nanostructured Mixed-Metal Oxides[J]. J Am Chem Soc, 2018,140(26):8128-8137. doi: 10.1021/jacs.7b11138
Xu S, Jacobs R, Morgan D. Factors Controlling Oxygen Interstitial Diffusion in the Ruddlesden-Popper Oxide La2-xSrxNiO4+δ[J]. Chem Mater, 2018,30(20):7166-7177. doi: 10.1021/acs.chemmater.8b03146
Peng B, Chen G, Wang T. Hydride Reduced LaSrCoO4-δ as New Cathode Material for Ba(Zr0.1Ce0.7Y0.2)O3 Based Intermediate Temperature Solid Oxide Fuel Cells[J]. J Power Sources, 2012,201:174-178. doi: 10.1016/j.jpowsour.2011.10.121
Yashima M, Enoki M, Wakita T. Structural Disorder and Diffusional Pathway of Oxide Ions in a Doped Pr2NiO4-Based Mixed Conductor[J]. J Am Chem Soc, 2008,130(9):2762-2763. doi: 10.1021/ja711478h
Berger C, Egger A, Merkle R. Oxygen Surface Exchange Kinetics of Pr2(Ni, Co)O4+δ Thin-Film Model Electrodes[J]. J Electrochem Soc, 2019,166(14):F1088-F1095. doi: 10.1149/2.0521914jes
Tropin E, Ananyev M, Porotnikova N. Oxygen Surface Exchange and Diffusion in Pr1.75Sr0.25Ni0.75Co0.25O4±δ[J]. Phys Chem Chem Phys, 2019,31(9):4779-4790. doi: 10.1039/C9CP00172G
Pérez-Flores J C, Pérez-Coll D, García-Martín S. A-and B-site Ordering in the A-Cation-Deficient Perovskite Series La2-xNiTiO6-δ (0 ≤ x < 0.20) and Evaluation as Potential Cathodes for Solid Oxide Fuel Cells[J]. Chem Mater, 2013,25(12):2484-2494. doi: 10.1021/cm4008014
Yamada A, Suzuki Y, Saka K. Ruddlesden-Popper-Type Epitaxial Film as Oxygen Electrode for Solid-Oxide Fuel Cells[J]. Adv Mater, 2008,20(21):4124-4138. doi: 10.1002/adma.200801199
Huan Y, Chen S, Zeng R. Intrinsic Effects of Ruddlesden-Popper-Based Bi Functional Catalysts for High-Temperature Oxygen Reduction and Evolution[J]. Adv Energy Mater, 2019,9(29):1901573-1901581. doi: 10.1002/aenm.201901573
Duan Z, Yang M, Yan A. Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a Cathode for IT-SOFCs with a GDC Interlayer[J]. J Power Sources, 2006,160(1):57-64. doi: 10.1016/j.jpowsour.2006.01.092
Kim Y M, Kim-Lohsoontorn P, Bae J. Effect of Unsintered Gadolinium-Doped Ceria Buffer Layer on Performance of Metal-Supported Solid Oxide Fuel Cells Using Unsintered Barium Strontium Cobalt Ferrite Cathode[J]. J Power Sources, 2010,195(19):6420-6427. doi: 10.1016/j.jpowsour.2010.03.095
Ding D, Liu M, Liu Z. Efficient Electro-catalysts for Enhancing Surface Activity and Stability of SOFC Cathodes[J]. Adv Energy Mater, 2013,3(9):1149-1154. doi: 10.1002/aenm.201200984
Ding D, Li X, Lai S Y. Enhancing SOFC Cathode Performance by Surface Modification Through Infiltration[J]. Energy Environ Sci, 2014,7(2):552-575. doi: 10.1039/c3ee42926a
Chen Y, Chen Y, Ding D. A Robust and Active Hybrid Catalyst for Facile Oxygen Reduction in Solid Oxide Fuel Cells[J]. Energy Environ Sci, 2017,10(4):964-971. doi: 10.1039/C6EE03656B
Jacobson , A J. Materials for Solid Oxide Fuel Cells[J]. Chem Mater, 2010,22(3):660-674. doi: 10.1021/cm902640j
Takeda Y, Kanno R, Noda M. Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia[J]. J Electrochem Soc, 1987,134(11):2656-2661. doi: 10.1149/1.2100267
Siebert E, Hammouche A, Kleitz M. Impedance Spectroscopy Analysis of La1-xSrxMnO3-Yttria-Stabilized Zirconia Electrode-Kinetics[J]. Electrochim Acta, 1995,40(11):1741-1753. doi: 10.1016/0013-4686(94)00361-4
Chen D, Ran R, Zhang K. Intermediate-Temperature Electrochemical Performance of a Polycrystalline PrBaCo2O5+δ Cathode on Samarium-Doped Ceria Electrolyte[J]. J Power Sources, 2009,188(1):96-105. doi: 10.1016/j.jpowsour.2008.11.045
Chen H, Guo Z, Zhang L A. Improving the Electrocatalytic Activity and Durability of the La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode by Surface Modification[J]. ACS Appl Mater Interface, 2018,10(46):39785-39793. doi: 10.1021/acsami.8b14693
Mukherjee K, Hanyamizu Y, Kim C S. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells:Roles of Doping, Orientation, and Crystal Structure[J]. ACS Appl Mater Interface, 2016,8(50):34295-34302. doi: 10.1021/acsami.6b08977
Sun S, Zhang H, Pan M. Dynamic Simulation of Oxygen Transport Rates in Highly Ordered Electrodes for Proton Exchange Membrane Fuel Cells[J]. Fuel Cells, 2015,15(3):456-462. doi: 10.1002/fuce.201400094
Meng J, Liu X, Yao C. Bi-Doped La2ZnMnO6-δ and Relevant Bi-Deficient Compound as Potential Cathodes for Intermediate Temperature Solid Oxide Fuel Cells[J]. Solid State Ionics, 2015,279:32-38. doi: 10.1016/j.ssi.2015.07.016
Zhang L, Yao G, Song Z. Effects of Pr-Deficiency on Thermal Expansion and Electrochemical Properties in Pr1-xBaCo2O5+δ Cathodes for IT-SOFCs[J]. Electrochim Acta, 2016,212:522-534. doi: 10.1016/j.electacta.2016.07.014
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Zili Ma , Zeyu Li , Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Zhuangzhuang Zhang , Yaru Qiao , Jun Zhao , Dai-Huo Liu , Mengmin Jia , Hongwei Tang , Liang Wang , Dongmei Dai , Bao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478