Citation: GAO Siheng, YANG Yu, WU Jinling, QIN Lixia, KANG Shizhao, LI Xiangqing. Preparation and Photoelectric Performance of Graphene Oxide/Ultrafine Silver Composite[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 923-929. doi: 10.11944/j.issn.1000-0518.2020.08.200034 shu

Preparation and Photoelectric Performance of Graphene Oxide/Ultrafine Silver Composite

  • Corresponding author: LI Xiangqing, E-mail:xqli@sit.edu.cn
  • Received Date: 4 February 2020
    Revised Date: 23 March 2020
    Accepted Date: 26 April 2020

    Fund Project: the National Natural Science Foudation of China(No. 21771125), and the Shanghai Science and Technology Commission Local Capacity Building Project (No.19090503700)the Shanghai Science and Technology Commission Local Capacity Building Project No.19090503700the National Natural Science Foudation of China No. 21771125

Figures(7)

  • Ultrafine silver powder has shown wide applications in the fields of communication, electronics and front electrode of solar cells. Its size distribution, dispersion and surface state have close relationship with its performance. In this paper, in order to obtain ultrafine silver composite with narrow size distribution, good dispersibility and high conductivity, graphene oxide (GO) was introduced in the later period of silver particles synthesized by liquid phase reduction. The structure and morphology of the composite silver powder were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The results show that the ultrafine silver powders obtained by this method possess good dispersion and narrow size distribution. Furthermore, the interaction between GO and silver particles was explored by UV-visible spectroscopy. It is also found that by fixing the concentration of silver nitrate solution, and increasing the content of GO, the conductivity of silver powder first increases, and then decreases. When the mass percentage of GO is 2.5%, due to more effective contact among silver particles, its interfacial resistance is lower and photocurrent is higher. It will provide important data and valuable reference for the application of ultrafine silver.
  • 加载中
    1. [1]

      Irizarry R, Burwell L, Leon M S. Preparation and Formation Mechanism of Silver Particles with Spherical Open Structures[J]. J Chem Educ, 2011,50(13):8023-8033.  

    2. [2]

      Liu Z, Qi X L, Wang H. Synthesis and Characterization of Spherical and Mono-Disperse Micro-Silver Powder Used for Silicon Solar Cell Electronic Paste[J]. Mater Lett, 2012,23(2):250-255.  

    3. [3]

      Henrika G, Juha L, Saima A. Control of the Size of Silver Nanoparticles and Release of Silver in Heat Treated SiO2-Ag Composite Powders[J]. Mater, 2018,11(1):80-91. doi: 10.3390/ma11010080

    4. [4]

      TIAN Qinghua, DENG Duo, LI Yu. Preparation of Ultrafine Silver Powders with Controllable Size and Morphology[J]. Trans Nonferrous Met Soc China, 2018,28(3):524-533.

    5. [5]

      YAO Suwei, CAO Yan, ZHANG Weiguo. Preparation of Silver Nanoparticles with Different Morphology and Their Formation Mechanism by Photoreduction[J]. Chinese J Appl Chem, 2006,23(4):438-440. doi: 10.3969/j.issn.1000-0518.2006.04.022

    6. [6]

      Kowalski K, Jurczyk M U, Wirstlein P K. Properties of Ultrafine-Grained Mg-Based composites Modified by Addition of Silver and Hydroxyapatite[J]. Mater Sci Technol, 2018,34:1096-1103. doi: 10.1080/02670836.2018.1424381

    7. [7]

      Fu M, Li H Y, Wang Y. Study on the Synthesis and Performances of Ultrafine Silver Powder Used as Silicon Solar Cell Front Silver Contacts[J]. Mater Sci Forum, 2016,52:378-384.  

    8. [8]

      Meng S Y, Wu H B, Wu S P. Preparation of Ultrafine Silver Powder and Its Electrical Properties[J]. Mater, 2004,23(7):35-37.  

    9. [9]

      WEI Lili, XU Shengming, XU Gang. Effect of Surfactant on Dispersion of Ultrafine Silver Powder[J]. Trans Nonferrous Met Soc China, 2009,19(3):595-600. doi: 10.3321/j.issn:1004-0609.2009.03.031

    10. [10]

      Guo G, Gan W, Luo J. Preparation and Dispersive Mechanism of Highly Dispersive Ultrafine Silver Powder[J]. Appl Surf Sci, 2010,256(22):6683-6687. doi: 10.1016/j.apsusc.2010.04.070

    11. [11]

      Motlak M, Barakat N A M, Akhtar M S. Influence of GO Incorporation in TiO2 Nanofibers on the Electrode Efficiency in Dye-Sensitized Solar Cells[J]. Ceram Int, 2015,41(1):1205-1212. doi: 10.1016/j.ceramint.2014.09.049

    12. [12]

      MENG Xianwen, SONG Xiao, LIU Suqin. Preparation of Ag3VO4/GO Composite and Its Visible Light Catalytic Performance[J]. Chinese J Appl Chem, 2016,33(12):1441-1447. doi: 10.11944/j.issn.1000-0518.2016.12.160088

    13. [13]

      LAN Feng, MA Shenghua, WANG Hui. Applications of Graphene in Solar Cells[J]. Knowl Mod Phys, 2018,1(4):6-9.  

    14. [14]

      WANG Lihui,SHI Haixin,YIN Yanzhen. Ag-Doped Graphene-Coated Solar Cell Front Electrode Silver Paste and Preparation Method:CN,201711206932[P]. 2018-04-20(in Chinese).

    15. [15]

      Bakhshizadeh N, Sivoththaman S. Graphene-Decorated Nanocomposites for Printable Electrodes in Thin Wafer Devices[J]. Electron Mater, 2017,46(12):6922-6929. doi: 10.1007/s11664-017-5734-z

    16. [16]

      Ge R Y, Wang X Y, Zhang C. The Influence of Combination Mode on the Structure and Properties of Porphyrin-Graphene Oxide Composites[J]. Colloids Surf A, 2015,483:45-52. doi: 10.1016/j.colsurfa.2015.05.056

    17. [17]

      Li G, Feng W, Zhang X. Facile Preparation of Nanoporous Ag Decorated with CeO2 Nanoparticles for Surface-Enhanced Raman Scattering[J]. J Mater Res, 2019,34(12):1-11.  

    18. [18]

      Xia X H, Zeng J, Li Q G. Silver Nanocrystals with Concave Surfaces and Their Optical and Surface-Enhanced Raman Scattering Properties[J]. Angew Chem, 2011,123(52):12750-12754. doi: 10.1002/ange.201105200

    19. [19]

      Jiang J, Zhu L, Zou J. Micro/nano-Structured Graphitic Carbon Nitride-Ag Nanoparticle Hybrids as Surface-Enhanced Raman Scattering Substrates with Much Improved Long-Term Stability[J]. Carbon, 2015,87:193-205. doi: 10.1016/j.carbon.2015.02.025

    20. [20]

      Chao Y X, Yang H W, Li Y X. Rapid Synthesis of Irregular Sub-Micron Flaky Silver with High Flake-Particle Ratio:Application to Silver Paste[J]. Chem Phys Lett, 2018,708:183-187. doi: 10.1016/j.cplett.2018.08.021

    21. [21]

      Florent P, Clement A R, Miriam C. Plasmonic Nanocomposites Based on Silver Nanocube-Polymer Blends Displaying Nearly Perfect Absorption in the UV Region[J]. Langmuir, 2019,35(6):2179-2187. doi: 10.1021/acs.langmuir.8b03003

    22. [22]

      Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    23. [23]

      Cittadini M, Bersani M, Perrozzi F. Graphene Oxide Coupled with Gold Nanoparticles for Localized Surface Plasmon Resonance Based Gas Sensor[J]. Carbon, 2014,69:452-459. doi: 10.1016/j.carbon.2013.12.048

    24. [24]

      Ma Y F, Yang L L, Yang Y. Multifunctional Ag-Decorated g-C3N4 Nanosheets as Recyclable SERS Substrates for CV and RhB Detection[J]. RSC Adv, 2018,8(39):22095-22102. doi: 10.1039/C8RA02657B

    25. [25]

      Akbari E, Akbari I, Ebrahimi M R. sp2/sp3 Bonding Ratio Dependence of the Band-Gap in Graphene Oxide[J]. Eur Phys J B, 2019,92(4):22095-22102.  

    26. [26]

      Romano V, Torrisi L, Cutroneo M. Raman Investigation of Laser-Induced Structural Defects of Graphite Oxide Films[J]. EPJ Web Confer, 2018,167:1-4.  

    27. [27]

      Zhuang B, Li X Q, Ge R Y. Assembly and Electron Transfer Mechanisms on Visible Light Responsive 5,10,15,20-Meso-Tetra(4-Carboxyphenyl) Porphyrin/Cuprous Oxide Composite for Photocatalytic Hydrogen Production[J]. Appl Catal A, 2017,533:81-89. doi: 10.1016/j.apcata.2017.01.008

    28. [28]

      Tu W, Lei J, Wang P. Photoelectrochemistry of Free-Base-Porphyrin-Functionalized Zinc Oxide Nanoparticles and Their Applications in Biosensing[J]. Chemistry, 2011,17(34):9440-9447. doi: 10.1002/chem.201100577

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    13. [13]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    14. [14]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    17. [17]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    18. [18]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(4)
  • Abstract views(1094)
  • HTML views(297)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return