Citation: SONG Xun, JIA Yuting, ZHANG Jieling, NING Jinfeng, ZUO Haiyan, HUANG Xuehong. Poly(ether ether ketone) Proton Exchange Membrane Containing Bisphenol Fluorene Unit for Vanadium Redox Flow Battery Application[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 912-922. doi: 10.11944/j.issn.1000-0518.2020.08.200022 shu

Poly(ether ether ketone) Proton Exchange Membrane Containing Bisphenol Fluorene Unit for Vanadium Redox Flow Battery Application

  • Corresponding author: HUANG Xuehong, E-mail:xhhuang64@fjnu.edu.cn;
  • Received Date: 17 January 2020
    Revised Date: 1 April 2020
    Accepted Date: 14 May 2020

Figures(10)

  • Poly(ether ether ketone) (PEEK) containing methyl groups was synthesized by the aromatic nucleophilic polycondensation reaction of bisphenol fluorene unit, 4, 4'-(Hexafluoroisopropylidene)diphenol, and 4, 4'-difluoro-benzophenone. Poly(ether ether ketone) proton exchange membranes were post-sulfonated using concentrated sulfuric acid to give highly proton conductive sulfonic fluorenyl groups (SF-PEEK). The structure and morphology of SF-PEEK membranes were characterized by Fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance spectroscopy (1H NMR), thermal gravimetric analyzer (TGA), atomic force microscope (AFM) and scanning electron microscopy (SEM). The SF-PEEK membranes have strong hydrophilic/hydrophobic phase separation. The conductivity of the SF80-PFEK608 membrane (IEC=1.97 mmol/g) is 4.15×10-2 S/cm which is lower than that of Nafion membrane (5.67×10-2 S/cm). SF-PEEK membranes show much lower vanadium ions permeability (3.15×10-7~1.48×10-6 cm2/min) than that of Nafion 117 membrane (7.04×10-6 cm2/min). As a result, the self-discharge duration of the vanadium redox flow battery (VRFB) cell with SF80-PEEK608 membrane (90 h) is longer than that of VRFB cell with Nafion 117 membrane (57 h). Furthermore, the VRFB cell with SF80-PEEK608 (IEC=1.97 mmol/g) membrane exhibits higher coulombic efficiency of 80.9% compare with that of VRFB cell with Nafion 117 membrane (coulombic efficiency of 78.8%) at current density of 40 mA/cm2. The results indicate that SF-PEEK membrane is high-performance and low-cost alternative membrane for VRFB application.
  • 加载中
    1. [1]

      Wang W, Luo Q T, Li B. Recent Progress in Redox Flow Battery Research and Development[J]. Adv Funct Mat, 2013,23(8):970-986. doi: 10.1002/adfm.201200694

    2. [2]

      Ulaganathan M, Aravindan V, Yan Q. Recent Advancements in All-Aanadium Redox Flow Batteries[J]. Adv Mater Interfaces, 2016,3(1):1-22.  

    3. [3]

      Sum E, Skyllas-Kazacos M. A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications[J]. J Power Sources, 1985,15:179-190. doi: 10.1016/0378-7753(85)80071-9

    4. [4]

      Zeng L, Ye J Y, Zhang J H. A Promising SPEEK/MCM Composite Membrane for Highly Effcient Vanadium Redox Fow Battery[J]. Surf Coat Technol, 2019,358(2):167-172. doi: 10.1016/j.cej.2018.01.001

    5. [5]

      Ye J Y, Cheng Y H, Sun L D. A Green SPEEK/lignin Composite Membrane with High Ion Selectivity for Vanadium Redox Flow Battery[J]. J Membr Sci, 2019,572:110-118. doi: 10.1016/j.memsci.2018.11.009

    6. [6]

      Ulaganathan M, Jain A, Aravindan V. Bio-mass Derived Mesoporous Carbon as Superior Electrode in All Vanadium Redox Flow Battery with Multicouple Reactions[J]. J Power Sources, 2015,274:846-850. doi: 10.1016/j.jpowsour.2014.10.176

    7. [7]

      Tian S, Meng Y, Hay A S. Membranes from Poly(aryl ether)-Based Ionomers Containing Randomly Distributed Nanoclusters of 6 or 12 Sulfonic Acid Groups[J]. Macromolecules, 2009,42(4):1153-1160. doi: 10.1021/ma802456m

    8. [8]

      Zhang S H, Zhang B G, Xing D B. Poly(phthalazinone ether ketone ketone) Anion Exchange Membranes with Pyridinium as Ion Exchange Groups for Vanadium Redox Flow Battery Applications[J]. J Mater Chem A, 2013,1(39):12246-12254. doi: 10.1039/c3ta11541k

    9. [9]

      Kausar N, Mousa A, Skyllas-Kazacos M. The Effect of Additives on the High-Temperature Stability of the Vanadium Redox Flow Battery Positive Electrolytes[J]. ChemElectroChem, 2016,3(2):276-282. doi: 10.1002/celc.201500453

    10. [10]

      Wang G, Lee K H, Lee W H. Durable Sulfonated Poly(benzothiazole-co-benzimidazole) Proton Exchange Membranes[J]. Macromolecules, 2014,47(18):6355-6364. doi: 10.1021/ma501409v

    11. [11]

      Yee R S, Zhang K, Ladewig B P. The Effects of Sulfonated Poly(ether ether ketone) Ion Exchange Preparation Conditions on Membrane Properties[J]. Membranes, 2013,3(3):182-95. doi: 10.3390/membranes3030182

    12. [12]

      Winardi S, Raghu S C, Oo M O. Sulfonated Poly(ether ether ketone)-Based Proton Exchange Membranes for Vanadium Redox Battery Applications[J]. J Membr Sci, 2014,450:313-322. doi: 10.1016/j.memsci.2013.09.024

    13. [13]

      Oh K, Ketpang K, Kim H. Synthesis of Sulfonated Poly(arylene ether ketone) Block Copolymers for Proton Exchange Membrane Fuel Cells[J]. J Membr Sci, 2016,507:135-142. doi: 10.1016/j.memsci.2016.02.027

    14. [14]

      Assumma L, Nguyen H D, Iojoiu C. Effects of Block Length and Membrane Processing Conditions on the Morphology and Properties of Perfluorosulfonated Poly(arylene ether sulfone) Multiblock Copolymer Membranes for PEMFC[J]. ACS Appl Mater Interfaces, 2015,7(25):13808-13820. doi: 10.1021/acsami.5b01835

    15. [15]

      Maity S, Jana T. Polybenzimidazole Block Copolymers for Fuel Cell:Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties and Proton Conductivity of PEM[J]. ACS Appl Mater Interfaces, 2014,6(9):6851-64. doi: 10.1021/am500668c

    16. [16]

      Li N, Wang C, Lee S Y. Enhancement of Proton Transport by Nanochannels in Comb-shaped Copoly(arylene ether sulfone)s[J]. Angew Chem, 2011,123(39):9324-9327. doi: 10.1002/ange.201102057

    17. [17]

      Cui M, Zhang Z, Yuan T. Proton-conducting Membranes Based on Side-Chain-Type Sulfonated Poly(ether ketone/ether benzimidazole)s via One-Pot Condensation[J]. J Membr Sci, 2014,465:100-106. doi: 10.1016/j.memsci.2014.04.019

    18. [18]

      Chen D Y, Wang S J, Xiao M. Preparation and Properties of Sulfonated Poly(fluorenyl ether ketone) Membrane for Vanadium Redox Flow Battery Application[J]. J Power Sources, 2010,195:2089-2095. doi: 10.1016/j.jpowsour.2009.11.010

    19. [19]

      Zhang H W, Shen P K. Advances in the High Performance Polymer Electrolyte Membranes for Fuel Cells[J]. Chem Soc Rev, 2012,41(6):2382-94. doi: 10.1039/c2cs15269j

    20. [20]

      Pang J H, Feng S N, Yu Y Y. Poly(aryl ether ketone) Containing Flexible tetra-Sulfonated Side Chains as Proton Exchange Membranes[J]. Polym Chem, 2014,5(4):1477-1486. doi: 10.1039/C3PY01350B

    21. [21]

      Wang B L, Cai Z Z, Zhang N. Fully Aromatic Naphthalene-Based Sulfonated Poly(arylene ether ketone)s with Flexible Sulfoalkyl Groups as Polymer Electrolyte Membranes[J]. RSC Adv, 2015,1(5):536-544.  

    22. [22]

      Li N, Leng Y, Hickner M A. Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells[J]. J Am Chem Soc, 2013,135(27):10124-10133. doi: 10.1021/ja403671u

    23. [23]

      Kim D S, Kim Y S, Guiver M D. Highly Fluorinated Comb-Shaped Copolymer as Proton Exchange Membranes(PEMs):Fuel Cell Performance[J]. J Power Sources, 2008,182:100-105. doi: 10.1016/j.jpowsour.2008.03.065

    24. [24]

      Chen D Y, Wang S J, Xiao M. Preparation and Properties of Sulfonated Poly(fluorenyl ether ketone) Membrane for Vanadium Redox Flow Battery Application[J]. J Power Sources, 2010,195:2089-2095. doi: 10.1016/j.jpowsour.2009.11.010

    25. [25]

      Wang C, Li N, Shin D W. Fluorene-Based Poly(arylene ether sulfone)s Containing Clustered Flexible Pendant Sulfonic Acids as Proton Exchange Membranes[J]. et al, 2011,44(18):7296-7306.  

    26. [26]

      Luo J J, Wang S J, Xiao M. Fluorene-Containing Block Sulfonated Poly(ether ether ketone) as Proton-Exchange Membrane for PEM Fuel Cell Application[J]. Eur Polym J, 2010,46(8):1736-1744. doi: 10.1016/j.eurpolymj.2010.05.005

    27. [27]

      Matsumura S, Hlil A R, Lepiller C. Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups:Novel Branched Poly(ether-ketone)s[J]. Macromolecules, 2008,41(2):281-284. doi: 10.1021/ma071422x

    28. [28]

      Chen D Y, Wang S J, Xiao M. Synthesis of Sulfonated Poly(fluorenyl ether thioether ketone)s with Bulky-Block Structure and Its Application in Vanadium Redox Flow Battery[J]. Polymer, 2011,52(23):5312-5319. doi: 10.1016/j.polymer.2011.09.021

    29. [29]

      Wu H L, Ma C C M, Liu F Y. Preparation and Characterization of Poly(ether sulfone)/Sulfonated Poly(ether ether ketone) Blend Membranes[J]. Eur Polym J, 2006,42(7):1688-1695. doi: 10.1016/j.eurpolymj.2006.01.018

    30. [30]

      Sun J, Shi D, Zhong H. Investigations on the Self-discharge Process in Vanadium Flow Battery[J]. J Power Sources, 2015,294:562-568. doi: 10.1016/j.jpowsour.2015.06.123

    31. [31]

      Chen D Y, Wang S N, Xiao M. Synthesis and Characterization of Novel Sulfonated Poly(arylene thioether) Ionomers for Vanadiumredox Flow Battery Applications[J]. Energy Environ Sci, 2010,3(5):622-628. doi: 10.1039/B917117G

    32. [32]

      Chen D, Wang S, Xiao M. Sulfonated Poly(fluorenyl ether ketone) Membrane with Embedded Silica Rich Layer and Enhanced Proton Selectivity for Vanadium Redox Flow Battery[J]. J Power Sources, 2010,195:7701-7708. doi: 10.1016/j.jpowsour.2010.05.026

    33. [33]

      Aaron D S, Liu Q, Tang Z. Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture[J]. J Power Sources, 2012,206:450-453. doi: 10.1016/j.jpowsour.2011.12.026

    34. [34]

      Chen D, Hickner M A, Agar E. Optimized Anion Exchange Membranes for Vanadium Redox Flow Batteries[J]. ACS Appl Mater Interfaces, 2013,5(15):7559-66. doi: 10.1021/am401858r

    35. [35]

      Chen D, Hickner M A, Agar E. Optimizing Membrane Thickness for Vanadium Redox Flow Batteries[J]. J Membr Sci, 2013,437:108-113. doi: 10.1016/j.memsci.2013.02.007

    36. [36]

      Liu Q H, Grim G M, Papandrew A B. High Performance Vanadium Redox Flow Batteries with Optimized Electrode Configuration and Membrane Selection[J]. J Electrochem Soc, 2012,159(8):1246-1252. doi: 10.1149/2.051208jes

    37. [37]

      Chen D, Kim S, Li L. Stable Fluorinated Sulfonated Poly(arylene ether) Membranes for Vanadium Redox Flow Batteries[J]. RSC Adv, 2012,2(24):8087-8094. doi: 10.1039/C2RA20834B

    38. [38]

      Kjeang E, Michel R, Harrington D A. A Microfluidic Fuel Cell with Flow-Through Porous Electrodes[J]. J Am Chem Soc, 2008,130(12):4000-4006. doi: 10.1021/ja078248c

  • 加载中
    1. [1]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    2. [2]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    3. [3]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    4. [4]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    5. [5]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(6)
  • Abstract views(1258)
  • HTML views(356)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return