Citation: MIAO Zhongshuo, MEN Yongfeng. Crystallization and Melting Behaviors of Poly(1, 4-cyclohexylene Dimethylene Terephthalate) Studied by Fast-Scan Calorimetry[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 642-649. doi: 10.11944/j.issn.1000-0518.2020.06.190359 shu

Crystallization and Melting Behaviors of Poly(1, 4-cyclohexylene Dimethylene Terephthalate) Studied by Fast-Scan Calorimetry

  • Corresponding author: MEN Yongfeng, men@ciac.ac.cn
  • Received Date: 30 December 2019
    Revised Date: 9 February 2020
    Accepted Date: 10 March 2020

    Fund Project: the National Science Fund for Distinguished Young Scholars 51525305Supported by the National Science Fund for Distinguished Young Scholars(No.51525305)

Figures(6)

  • The crystallization and melting behavior of poly(1, 4-cyclohexylene dimethylene terephthalate) (PCT) was studied by fast scanning calorimetry (FSC) combined with traditional differential scanning calorimetry (DSC) in the range of near glass transition temperature and melting temperature (100~270 ℃). The crystallization rate of PCT is faster when the supercooling degree is larger. FSC can effectively inhibit the crystallization of PCT during the cooling process while the traditional DSC can avoid the influence of sample degradation on the experimental results under the lower supercooling degrees. The combination of FSC and DSC can well measure the crystallization kinetics of PCT. The experimental results show that the crystallization rate is the fastest at 175 ℃. FSC is also used to measure the melting point dependence of heating rate after isothermal crystallization, and calibrated on the basis of the modeling of melting kinetics for the determination of the melting point at zero heating rate Tm. The Hoffman-Weeks plot of Tm against Tc with the intersection of Tc=Tm suggested the equilibrium melting point Tmo≅315 ℃ of chain-extended infinite-size crystals of PCT.
  • 加载中
    1. [1]

      Kibler C J, Bell A, Smith J G. Polyesters of 1, 4-Cyclohexanedimethanol[J]. J Polym Sci Part A:Polym Chem, 1964,2(13):2115-2125.

    2. [2]

      Wunderlich B. Crystal Nucleation, Growth, Annealing[J]. Macromol Phys, 1976,2:214-227.  

    3. [3]

      Hoffman J D, Davis G T, Lauritzen J I, et al. The Rate of Crystallization of Linear Polymers with Chain Folding[M]//N.B. Hannay. Treatise on Solid State Chemistry. New York-London, 1976, 3: 497-614.

    4. [4]

      Wunderlich B. Crystal Melting[M]. New York:Macromolecular Physics Academic Press, 1980, 3.

    5. [5]

      Schick C, Mathot V. Fast Scanning Calorimetry[M]. Switzerland:Springer, 2016.

    6. [6]

      Toda A, Androsch R, Schick C. Feature Article:Insights into Polymer Crystallization and Melting from Fast Scanning Chip Calorimetry[J]. Polymer, 2016,91:239-263. doi: 10.1016/j.polymer.2016.03.038

    7. [7]

      Toda A, Taguchi K, Nozaki K. Melting Behaviors of Polyethylene Crystals:An Application of Fast-Scan DSC[J]. Polymer, 2014,55:3186-3194. doi: 10.1016/j.polymer.2014.05.009

    8. [8]

      Toda A, Yamada K, Hikosaka M. Superheating of the Melting Kinetics in Polymer Crystals:A Possible Nucleation Mechanism[J]. Polymer, 2002,43:1667-1679. doi: 10.1016/S0032-3861(01)00733-9

    9. [9]

      Toda A, Taguchi K, Nozaki K. Fast Limiting Behavior of the Melting Kinetics of Polyethylene Crystals Examined by Fast-Scan Calorimetry[J]. Thermochim Acta, 2019,677:211-216. doi: 10.1016/j.tca.2018.12.024

    10. [10]

      Minakov A A, Wurm A, Schick C. Superheating in Linear Polymers Studied by Ultrafast Nanocalorimetry[J]. Eur Phys J E, 2007,23:43-53. doi: 10.1140/epje/i2007-10173-8

    11. [11]

      Toda A. Heating Rate Dependence of Melting Peak Temperature Examined by DSC of Heat Flux Type[J]. J Therm Anal Calorim, 2016,123:1795-1808. doi: 10.1007/s10973-015-4603-3

    12. [12]

      Gradys A, Sajkiewics P, Adamovsky S. Crystallization of Poly(Vinylidene Fluoride) During Ultra-Fast Cooling[J]. Thermochim Acta, 2007,461:153-157. doi: 10.1016/j.tca.2007.05.023

    13. [13]

      Toda A, Konishi M, Schick C. An Evaluation of Thermal Lags of Fast-Scan Microchip DSC with Polymer Film Samples[J]. Thermochim Acta, 2014,589:262-269. doi: 10.1016/j.tca.2014.05.038

    14. [14]

      Lee Y, Porte R S. Double-Melting Behavior of Poly(ether ether ketone)[J]. Macromolecules, 1987,20:1336-1341. doi: 10.1021/ma00172a028

    15. [15]

      Chen H S, Porter R S. Melting Behavior of Poly(Ether Ether Ketone) in Its Blends with Poly(Ether Imide)[J]. J Polym Sci B Polym Phys, 1993,31:1845-1850. doi: 10.1002/polb.1993.090311217

    16. [16]

      Santis F D, Adamovsky S, Schick C. Isothermal Nanocalorimetry of Isotactic Polypropylene[J]. Macromolecules, 2007,40:9026-9031. doi: 10.1021/ma071491b

    17. [17]

      Silvestre C, Cimmino S, Schick C. Isothermal Crystallization of Isotactic Poly(Propylene) Studied by Superfast Calorimetry[J]. Macromol Rapid Commun, 2007,28:875-881. doi: 10.1002/marc.200600844

    18. [18]

      Rhoades A M, Williams J L, Androsch R. Crystallization Kinetics of Polyamide 66 at Processing-Relevant Cooling Conditions and High Supercooling[J]. Thermochim Acta, 2015,603:103-109. doi: 10.1016/j.tca.2014.10.020

    19. [19]

      Toda A, Taguchi K, Sato K. Melting Kinetics of It-Polypropylene Crystals over Wide Heating Rates[J]. J Therm Anal Calorim, 2013,113:1231-1237. doi: 10.1007/s10973-012-2914-1

    20. [20]

      Zhuravlev E, Wunderlich B, Schick C. Kinetics of Nucleation and Crystallization in Poly(ε-Caprolactone)(PCL)[J]. Polymer, 2011,52:1983-1997. doi: 10.1016/j.polymer.2011.03.013

    21. [21]

      Androsch R, Rhoades A M, Schick C. Density of Heterogeneous and Homogeneous Crystal Nuclei in Poly(Butylene Terephthalate)[J]. Eur Polym J, 2015,66:180-189. doi: 10.1016/j.eurpolymj.2015.02.013

    22. [22]

      Konishi T, Sakatsuji W, Fukao K. Temperature Dependence of Lamellar Thickness in Isothermally Crystallized Poly(Butylene Terephthalate)[J]. Macromolecules, 2016,49:2272-2280. doi: 10.1021/acs.macromol.6b00126

    23. [23]

      Furushima Y, Toda A, Androsch R. Two Crystal Populations with Different Melting/Reorganization Kinetics of Isothermally Melt Crystallized Polyamide 6[J]. J Polym Sci B Polym Phys, 2016,54:2126-2138. doi: 10.1002/polb.24123

    24. [24]

      Xu J, Heck B, Reiter G. Stabilization of Nuclei of Lamellar Polymer Crystals:Insights from a Comparison of the Hoffman-Weeks Line with the Crystallization Line[J]. Macromolecules, 2016,49:2206-2215. doi: 10.1021/acs.macromol.5b02123

    25. [25]

      Wang J, Li Z, Hu W B. Comparing Crystallization Rates Between Linear and Cyclic Poly(Epsilon-Caprolactones) via Fast-Scan Chip-Calorimeter Measurements[J]. Polymer, 2015,63:34-40. doi: 10.1016/j.polymer.2015.02.039

    26. [26]

      Minakov A A, Schick C, Martino G. Isothermal Reorganization of Poly(Ethylene Terephthalate) Revealed by Fast Calorimetry[J]. Faraday Discuss, 2005,128:261-270. doi: 10.1039/B403441D

    27. [27]

      Marand H, Xu J, Srinivas S. Determination of the Equilibrium Melting Temperature of Polymer Crystals:Linear and Nonlinear Hoffman-Weeks Extrapolations[J]. Macromolecules, 1998,31:8219-8229. doi: 10.1021/ma980747y

  • 加载中
    1. [1]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    2. [2]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    3. [3]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    4. [4]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    7. [7]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    8. [8]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    12. [12]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    13. [13]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    14. [14]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    16. [16]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    17. [17]

      Xuewei Qian Xingwen Sun Houjin Li Zhanxiang Liu Yuan Zheng Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Shuyong Zhang Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126

    18. [18]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    19. [19]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    20. [20]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

Metrics
  • PDF Downloads(3)
  • Abstract views(872)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return