Citation: QIAO Zongwen, ZHAO Benbo. Properties of Sulfonated Polysulfone Proton Exchange Membranes Based on One-Pot Method[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 658-665. doi: 10.11944/j.issn.1000-0518.2020.06.190355 shu

Properties of Sulfonated Polysulfone Proton Exchange Membranes Based on One-Pot Method

  • Corresponding author: QIAO Zongwen, qiaozongwen@126.com
  • Received Date: 27 December 2019
    Revised Date: 10 March 2020
    Accepted Date: 7 April 2020

    Fund Project: the Youth Talent Promotion Plan of Xi′an Association for Science and Technology and Science Research Program of Shaanxi Institute of Technology Gfy18-04the Natural Science Special Project of Shaanxi Province 2019JQ-927Supported by the Natural Science Special Project of Shaanxi Province(No.2019JQ-927), and the Youth Talent Promotion Plan of Xi′an Association for Science and Technology and Science Research Program of Shaanxi Institute of Technology(No.Gfy18-04)

Figures(6)

  • Ethyl isocyanate polysulfone (PS-SA) was prepared by introducing the —NCO active group onto the main chain of bisphenol A polysulfones matrix by the Friedel-Crafts alkylation reaction. Naphthalene sulfonic acid modified polysulfone (PS-NS) was obtained by using 2-naphthol-6, 8-disulfonic acid dipotassium as the nucleophilic reagent in one pot. The PS-NS proton exchange membranes(PEMs) were fabricated by solution casting. The relationship between temperature and the basic properties including water uptake, swelling ratio and proton conductivity were explored. PS-NS exhibits excellent dimensional stability at high water sorption because they can form phase separation structure by locating the hydrophilic group far away from the main chain of polysulfones. The water uptake of PS-NS-4 PEMs(the bonding amount of sulfonic groups is 1.42 mmol/g) is as high as 27.2% at 25 ℃ and 40.3% at 85 ℃, but the corresponding swelling ratio is only 25.2% and 57.2%. The properties are very close to that of Nafion115 membrane under the same condition.
  • 加载中
    1. [1]

      TAO Dan, XIANG Xiongzhi, WANG Lei. Synthsis and Characterization of Poly(Arylene ether)s Proton Exchange Membranes with Sulfonic Groups Attached on Pendent Naphthyl Rings[J]. Acta Polym Sin, 2014,3:326-332.

    2. [2]

      Zhang X L, Shi Q, Chen P. Block Poly(arylene ether sulfone) Copolymers Tethering Aromatic Side-Chain Quaternary Ammonium as Anion Exchange Membranes[J]. Polym Chem, 2018,9:699-711.  

    3. [3]

      Liu B J, Robertson G P, Kim D S. Enhanced Thermo-Oxidative Stability of Sulfophenylated Poly(ether sulfone)s[J]. Polymer, 2010,51:403-413. doi: 10.1016/j.polymer.2009.12.014

    4. [4]

      Feng S G, Shang Y M, Xie X F. Synthesis and Characterization of Crosslinked Sulfonated Poly(arylene ether sulfone) Membranes for DMFC Applications[J]. J Membr Sci, 2009,35:13-20.  

    5. [5]

      GONG Feixiang, QI Yonghong, XUE Qunxiang. Synthesis and Properties of Fluorinated Poly(arylene ether sulfone)s with Sulfonated Pentiptycene Pendants as Proton Exchange Membranes[J]. Chem J Chinese Univ, 2014,35:433-439. doi: 10.7503/cjcu20130605

    6. [6]

      Mishra A K, Bose S, Kuila T. Silicate-Based Polymer-Nanocomposite Membranes for Polymer Electrolyte Membrane Fuel Cells[J]. Prog Polym Sci, 2012,37:842-869. doi: 10.1016/j.progpolymsci.2011.11.002

    7. [7]

      RONG Qian, GU Shuang, HE Gaohong. Preparation and Performance of Sulfonated Polyether Ether/Ketone/Poly 4-Vinylepyridine Acid-Base Composite Proton Exchange Membrane[J]. Polym Mater Sci Eng, 2009,8:126-129.  

    8. [8]

      Lafitte B, Jannasch P. Proton-Conducting Aromatic Polymers Carrying Hypersulfonated Side Chains for Fuel Cell Applications[J]. Adv Funct Mater, 2007,17:2823-2834. doi: 10.1002/adfm.200700107

    9. [9]

      MA Li, CHENG Hailong, XU Jingmei. Prepartion and Performance of Sulfonated Poly(aryl ether ketone sulfone)/Poly(aryl ether sulfone oxadiazole) Composite Proton-Exchange Membranes[J]. Chem J Chinese Univ, 2014,35:639-644.  

    10. [10]

      Zhang Y, Wan Y, Zhao C J. Novel Side-Chain-Type Sulfonated Poly(arylene ether ketone) with Pendant Sulfoalkyl Groups for Direct Methanol Fuel Cells[J]. Polymer, 2009,50:4471-4478. doi: 10.1016/j.polymer.2009.07.036

    11. [11]

      Bose S, Kuila T, Nguyen T X. Polymer Membranes for High Temperature Proton Exchange Membrane Fuel Cell:Recent Advances and Challenges[J]. Prog Polym Sci, 2011,36:813-843. doi: 10.1016/j.progpolymsci.2011.01.003

    12. [12]

      Kobayashi T, Rilukawa M, Sanui K. Proton Conducting Polymers Derived from Poly(ether-etherketone) and Poly(4-phenoxybenzoyl-1, 4-phenylene)[J]. Solid State Ionic, 1998,106:219-225. doi: 10.1016/S0167-2738(97)00512-2

    13. [13]

      Liu D, Tao D, Ni J P. Synthesis and Properties of Highly Branched Sulfonated Poly(arylene ether)s with Flexible Alkylsulfonated Side Chains as Proton Exchange Membranes[J]. J Mater Chem C, 2016,4:1326-1335.  

    14. [14]

      QIAO Zongwen. Properties of Sulfonated Polysulfone Proton Exchange Membranes for Fuel Cells[J]. Mod Chem Ind, 2020,40(4):153-157.  

    15. [15]

      QIAO Zongwen, CHEN Tao. Properties of Side Chain Type Sulfonated Polysulfone Proton Exchange Membranes for Fuel Cells[J]. Chinese J Appl Chem, 2019,36(8):917-923.  

    16. [16]

      Gao Y, Robertson G P, Guiver M D. Proton Exchange Membranes Based on Sulfonated Poly(Phthalazinone Ether Ketone)s/Aminated Polymer Blends B[J]. Solid State Ionics, 2005,176:409-415. doi: 10.1016/j.ssi.2004.08.009

    17. [17]

      Zhang B P, Ni J P, Tang X Z. Synthesis and Properties of Reprocessable Sulfonated Polyimides Cross-Linked via Acid Stimulation for Use as Proton Exchange Membranes[J]. J Power Sources, 2017,337(1):110-117.  

    18. [18]

      Zhu Y Q, Manthiram A. Synthesis and Characterization of Polysulfone-Containing Sulfonated Side Chains for Direct Methanol Fuel Cells[J]. J Power Sources, 2011,196:7481-7487. doi: 10.1016/j.jpowsour.2011.05.019

    19. [19]

      Gong X, Yan X M, Li T T. Design of Pendent Imidazolium Side Chain with Flexible Ether-Containing Spacer for Alkaline Anion Exchange Membrane[J]. J Membr Sci, 2017,523(1):216-224.  

    20. [20]

      Ahnab M K, Lee S B, Min C M. Enhanced Proton Conductivity at Low Humidity of Proton Exchange Membranes with Triazole Moieties in the Side Chains[J]. J Membr Sci, 2017,532:480-486.  

    21. [21]

      Wang G G, Weng Y M, Chu D. Developing a Polysulfone-Based Alkaline Anion Exchange Membrane for Improved Ionic Conductivity[J]. J Membr Sci, 2009,332:63-68. doi: 10.1016/j.memsci.2009.01.038

    22. [22]

      Kima K, Junga B K, Koa T. Comb-Shaped Polysulfones Containing Sulfonated Polytriazole Side Chains for Proton Exchange Membranes[J]. J Membr Sci, 2018,554(15):232-243.  

    23. [23]

      Yin Y, Du Q, Qin Y Z. Sulfonated Polyimides with Flexible Aliphatic Side Chains for Polymer Electrolyte Fuel Cells[J]. J Membr Sci, 2011,367(1):211-219.  

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    10. [10]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    11. [11]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    15. [15]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    16. [16]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(9)
  • Abstract views(861)
  • HTML views(216)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return