Citation: SI Xiaojing, ZHU Wenjing, LI Xiang, LI Li, CHEN Zichao, DING Yaping. Determination of Ofloxacin in Medicine via Poly(p-aminobenzene sulfonic acid)/Graphene Electrochemical Modified Electrode[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 726-732. doi: 10.11944/j.issn.1000-0518.2020.06.190332 shu

Determination of Ofloxacin in Medicine via Poly(p-aminobenzene sulfonic acid)/Graphene Electrochemical Modified Electrode

  • Corresponding author: CHEN Zichao, chenzichao11@126.com DING Yaping, wdingyp@sina.com
  • Received Date: 12 December 2019
    Revised Date: 28 February 2020
    Accepted Date: 26 March 2020

    Fund Project: the Undergraduate Specialty Construction Project of Shanghai Municipal Universities Sixth batchSupported by the National Natural Science Foundation of China(No.21671132), the Shandong Provincial Key Research and Development Program(No.2019GSF108253), and the Undergraduate Specialty Construction Project of Shanghai Municipal Universities(Sixth batch)the Shandong Provincial Key Research and Development Program 2019GSF108253the National Natural Science Foundation of China 21671132

Figures(6)

  • A simple, rapid and sensitive electrochemical analysis method with a poly(p-aminobenzene sulfonic acid)/graphene modified glassy carbon electrode (pABSA/GR/GCE) for the determination of ofloxacin (OFL) is established based on GR nanomaterials and cyclic voltammetry (CV) in this study. Compared with the glassy carbon electrode, the peak current of OFL increases significantly using pABSA/GR/GCE. Under optimized experimental conditions, the pABSA/GR/GCE shows a good linear relationship with the concentration of OFL in the range of 1~600 μmol/L and a detection limit (S/N=3) of 0.33 μmol/L. The pABSA/GR/GCE is easy to be prepared with good reproducibility and stability. It has been used in the determination of ofloxacin eye drops with satisfactory results.
  • 加载中
    1. [1]

      Zang S, Liu Y J, Lin M H. A Dual Amplified Electrochemical Immunesensor for Ofloxacin:Polypyrrole Film-Au Nanocluster as the Matrix and Multi-Enzyme-Antibody Functionalized Gold Nanorod as the Label[J]. Electrochim Acta, 2013,90(2):246-253.  

    2. [2]

      Todd P A, Faulds D. Ofloxacin a Reappraisal of Its Antimicrobial Activity, Pharmacology and Therapeutic Use[J]. Drugs, 1991,42(5):825-876. doi: 10.2165/00003495-199142050-00008

    3. [3]

      Cheng G W, Wu H L, Huang Y L. Simultaneous Determination of Malondialdehyde and Ofloxacin in Plasma Using an Isocratic High-Performance Liquid Chromatography/Fluorescence Detection System[J]. Anal Chim Acta, 2008,616(2):230-234.  

    4. [4]

      Amin A S, El-Fetouh GOUDa A A, El-Sheikh R. Spectrophotometric Determination of Gatifloxacin in Pure Form and in Pharmaceutical Formulation[J]. Spectrochim Acta Part A, 2007,67(5):1306-1312. doi: 10.1016/j.saa.2006.09.041

    5. [5]

      Kunjan B, Shailesh S, Yogini P. Simultaneous Estimation of Ofloxacin, Clotrimazole, and Lignocaine Hydrochloride in Their Combined Ear-Drop Formulation by Two Spectrophotometric Methods[J]. J AOAC Int, 2017,100(1):38-44. doi: 10.5740/jaoacint.16-0229

    6. [6]

      Shervington L A, Abba M, Hussain B. The Simultaneous Separation and Determination of Five Quinolone Antibotics Using Isocratic Reversed-Phase HPLC:Application to Stability Studies on an Ofloxacin Tablet Formulation[J]. J Pharmaceut Biomed, 2005,39(3):769-775.  

    7. [7]

      Xiao X, Wu J, Li Z Q. Enantioseparation and Sensitive Analysis of Ofloxacin by Poly(3, 4-dihydroxyphenylalanine) Functionalized Magnetic Nanoparticles-Based Solid Phase Extraction in Combination with On-Line Concentration Capillary Electrophoresis[J]. J Chromatogr A, 2019,1587(2):14-23.  

    8. [8]

      Zhang F F, Gu S Q, Ding Y P. Simultaneous Determination of Ofloxacin and Gatifloxacin on Cysteic Acid Modified Electrode in the Presence of Sodium Dodecyl Benzene Sulfonate[J]. Bioelectrochemistry, 2013,89(2):42-49.  

    9. [9]

      Zhu Y Q, Li C K, Wang L M. Differential Pulse Voltammetry Determination of Ofloxacin in Human Serum and Urine Based on a Novel Tryptophan-Graphene Oxide-Carbon Nanotube Electrochemical Sensor[J]. Eletroanalysis, 2019,31(5):1429-1436.  

    10. [10]

      Armijo F, Goya M C, Reina M. Electrocatalytic Oxidation of Nitrite to Nitrate Mediated by Fe(Ⅲ) Poly 3-Aminophenyl Porphyrin Grown on Five Different Electrode Surfaces[J]. J Mol Catal A-Chem, 2007,268(1):148-154.  

    11. [11]

      Zhang L, Zhang C H, Lian J Y. Electrochemical Synthesis of Polyaniline Nano-networks on P-aminobenzene Sulfonic Acid Functionalized Glassy Carbon Electrode-Its Use for the Simultaneous Determination of Ascorbic Acid and Uric Acid[J]. Biosens Bioelectron, 2008,24(6):690-695.  

    12. [12]

      Fang Y, Liu Y C, Shen D D. A Sensor for Dopamine Based on Gold Nanoparticles/Poly(p-aminobenzene sulfonic acid) Modified Glassy Carbon Electrode[J]. Nanosci Nanotech Lett, 2015,7(6):462-468. doi: 10.1166/nnl.2015.1986

    13. [13]

      GAO Guangheng, ZHANG Jinling, DU Yi. Simultaneous Determination of Dopamine and Ascorbic Acid by PABSA/GO Modified Electrode[J]. Chinese J Anal Lab, 2018,37(9):1033-1036.  

    14. [14]

      Xi L L, Zhang D W, Wang F L. Layer-by-Layer Assembly of Poly(p-aminobenzene sulfonic acid)/Quaternary Amine Functionalized Carbon Nanotube/p-Aminobenzene Sulfonic Acid Composite Film on Glassy Carbon Electrode for the Determination of Ascorbic Acid[J]. J Electroanal Chem, 2016,767(1):91-99.

    15. [15]

      SUN Na, WANG Zonghua, XIA Jianfei. Selective and Sensitive Determination of Uric Acid on PABSA/GN Composite-modified Glassy Carbon Electrode[J]. J Instrum Anal, 2012,31(7):853-857. doi: 10.3969/j.issn.1004-4957.2012.07.017

    16. [16]

      HE Fengyun, PAN Zhaorui, ZHOU Hong. Electrochemical Behavior and Determination of Pyridoxine Hydrochloride at Poly p-Aminobenzene Sulfonic Acid Modified Electrode[J]. Chinese J Appl Chem, 2015,32(2):225-231.  

    17. [17]

      Saglikoglu G, Sadikoglu M, Menek N. Electrocatalytic Oxidation of Acyclovir on Poly(p-aminobenzene sulfonic acid) Film Modified Glassy Carbon Electrode[J]. Electroana, 2015,27(10):2431-2438. doi: 10.1002/elan.201500102

    18. [18]

      Yao C, Sun H, Hua F F. Sensitive Simultaneous Determination of Nitrophenol Isomers at Poly(p-aminobenzene sulfonic acid) Film Modified Graphite Electrode[J]. Electrochim Acta, 2015,156(2):163-170.  

    19. [19]

      Wei Y L, Luo L Q, Ding Y P. A Glassy Carbon Eelectrode Modified with Poly(eriochrome black T) for Sensitive Determination of Adenine and Guanine[J]. Microchim Acta, 2013,180(5):887-893.  

    20. [20]

      Pilehvar S, Reinemann C, Bottari F. A Joint Action of Aptamers and Gold Namoparticles Chemically Trapped on a Glassy Carbon Support for the Electrochemical Sensing of Ofloxacin[J]. Sensor Actuat B-Chem, 2017,240(6):1024-1035.  

    21. [21]

      Wu F H, Xu F, Chen L. Cuprous Oxide/Nitrogen-doped Graphene Nanocomposites as Electrochemical Sensors for Ofloxacin Determination[J]. Chem Res Chinese Uinv, 2016,32(3):468-473. doi: 10.1007/s40242-016-5367-4

    22. [22]

      Si X J, Wei Y L, Wang C L. Sensitive Electrochemical Sensor for Ofloxacin Based on Graphene/Zinc Oxide Composite Film[J]. Anal Methods, 2018,10(17):1961-1967. doi: 10.1039/C8AY00127H

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    19. [19]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    20. [20]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

Metrics
  • PDF Downloads(3)
  • Abstract views(378)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return