Citation: LIN Yongcen, DONG Xue, MA Yuqin, ZHAO Lang. Designed Formation of NiCo-Layered Double Hydroxide Derived from Zeolitic Imidazolate Framework-67 with Selective Dye Adsorption Property[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 683-694. doi: 10.11944/j.issn.1000-0518.2020.06.190330 shu

Designed Formation of NiCo-Layered Double Hydroxide Derived from Zeolitic Imidazolate Framework-67 with Selective Dye Adsorption Property

  • Corresponding author: MA Yuqin, myq3939@163.com ZHAO Lang, zhaolang@ciac.ac.cn
  • Received Date: 11 December 2019
    Revised Date: 9 February 2020
    Accepted Date: 12 March 2020

    Fund Project: Supported by the National Natural Science Foundation of China(No.21201160), and the Jilin Province Science and Technology Development Program(No.20170204038GX, No.20170101180JC)the Jilin Province Science and Technology Development Program 20170204038GXthe Jilin Province Science and Technology Development Program 20170101180JCthe National Natural Science Foundation of China 21201160

Figures(7)

  • A novel hollow composite of NiCo-layered double hydroxide and zeolitic imidazolate framework-67 (NiCo-LDH@ZIF-67) adsorbent with high adsorption capacity for pollutants, high adsorption selectivity of methyl orange (MO) and great regenerability was synthesized using ZIF-67 as a template. The sample was characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), N2 adsorption desorption and X-ray photoelectron spectroscopy (XPS). The effect of solution pH, the initial MO concentration and the contact time with the mixture solution on the adsorption property of NiCo-LDH@ZIF-67 was studied. The results indicate that its adsorption kinetics for MO can be well simulated by a pseudo-second-order model and its adsorption isotherm for MO follows the Langmuir equation. The optimized adsorption condition is pH=4, contact time of 15 minutes, and adsorbent dosage of 2400 mg/L. Its maximum adsorption capacity for MO can reach as high as 1766 mg/g and is higher than those reported for all similar adsorbents in the literature. In addition, NiCo-LDH@ZIF-67 can selectively adsorb MO from a mixed solution of MO and methylene blue (MB).
  • 加载中
    1. [1]

      Akbarnejad S, Amooey A A, Ghasemi S. High Effective Adsorption of Acid Fuchsin Dye Using Magnetic Biodegradable Polymer-Based Nanocomposite from Aqueous Solutions[J]. Microchem J, 2019,149103966. doi: 10.1016/j.microc.2019.103966

    2. [2]

      Sabarinathan C, Karuppasamy P, Vijayakumar C T. Development of Methylene Blue Removal Methodology by Adsorption Using Molecular Polyoxometalate:Kinetics, Thermodynamics and Mechanistic Study[J]. Microchem J, 2019,146:315-326. doi: 10.1016/j.microc.2019.01.015

    3. [3]

      Miandad R, Kumar R, Barakat M A. Untapped Conversion of Plastic Waste Char into Carbon-Metal LDOs for the Adsorption of Congo Red[J]. J Colloid Interface Sci, 2018,511:402-410. doi: 10.1016/j.jcis.2017.10.029

    4. [4]

      Wang L, Wang A. Adsorption Properties of Congo Red from Aqueous Solution onto Surfactant-Modified Montmorillonite[J]. J Hazard Mater, 2008,160(1):173-180. doi: 10.1016/j.jhazmat.2008.02.104

    5. [5]

      Lin H Y, Zhao J, Song G. High Quality and High Performance Adsorption of Congo Red Using As-Grown MWCNTs Synthesized over a Co-MOF as a Catalyst Precursor via the CVD Method[J]. Dalton Trans, 2017,46(48):17067-17073. doi: 10.1039/C7DT03627B

    6. [6]

      Wang J H, Zhang Y, An L C. Sulfonated Hollow Covalent Organic Polymer:Highly-Selective Adsorption Toward Cationic Organic Dyes over Anionic Ones in Aqueous Solution[J]. Chinese J Chem, 2018,36(9):826-830. doi: 10.1002/cjoc.201800142

    7. [7]

      Zhao S, Chen D, Wei F. Removal of Congo Red Dye from Aqueous Solution with Nickel-Based Metal-Organic Framework/Graphene Oxide Composites Prepared by Ultrasonic Wave-Assisted Ball Milling[J]. Ultrason Sonochem, 2017,39:845-852. doi: 10.1016/j.ultsonch.2017.06.013

    8. [8]

      Yang Q, Wang Y, Wang J. High Effective Adsorption/Removal of Illegal Food Dyes from Contaminated Aqueous Solution by Zr-MOFs(UiO-67)[J]. Food Chem, 2018,254:241-248. doi: 10.1016/j.foodchem.2018.02.011

    9. [9]

      Guan T, Fang L, Lu Y. A Facile Approach to Synthesize 3D Flower-Like Hierarchical NiCo Layered Double Hydroxide Microspheres and Their Enhanced Adsorption Capability[J]. Colloids Surf A, 2017,529:907-915. doi: 10.1016/j.colsurfa.2017.06.049

    10. [10]

      Chakraborty A, Acharya H. Facile Synthesis of MgAl-Layered Double Hydroxide Supported Metal Organic Framework Nanocomposite for Adsorptive Removal of Methyl Orange Dye[J]. J Colloid Interface Sci, 2018,24:35-39. doi: 10.1016/j.colcom.2018.03.005

    11. [11]

      Hu H, Guan B, Xia B. Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties[J]. J Am Chem Soc, 2015,137(16):5590-5595. doi: 10.1021/jacs.5b02465

    12. [12]

      Wang H, Fan G L, Zheng C. Facile Sodium Alginate Assisted Assembly of Ni-Al Layered Double Hydroxide Nanostructures[J]. Ind Eng Chem Res, 2010,49(6):2759-2767. doi: 10.1021/ie901519h

    13. [13]

      Li C, Wei M, Evans D G. Layered Double Hydroxide-Based Nanomaterials as Highly Efficient Catalysts and Adsorbents[J]. Small, 2014,10(22):4469-4486. doi: 10.1002/smll.201401464

    14. [14]

      Yang Y, Yan X, Hu X. In-situ Growth of ZIF-8 on Layered Double Hydroxide:Effect of Zn/Al Molar Ratios on Their Structural, Morphological and Adsorption Properties[J]. J Colloid Interface Sci, 2017,505:206-212. doi: 10.1016/j.jcis.2017.05.100

    15. [15]

      Yao W, Yu S J, Wang J. Enhanced Removal of Methyl Orange on Calcined Glycerol-Modified Nanocrystallined Mg/Al Layered Double Hydroxides[J]. Chem Eng J, 2017,307:476-486. doi: 10.1016/j.cej.2016.08.117

    16. [16]

      Tao X, Liu D, Cong W. Controllable Synthesis of Starch-Modified ZnMgAl-LDHs for Adsorption Property Improvement[J]. Appl Surf Sci, 2018,457:572-579. doi: 10.1016/j.apsusc.2018.06.264

    17. [17]

      Robati D, Mirza B, Rajabi M. Removal of Hazardous Dyes-BR 12 and Methyl Orange Using Graphene Oxide as an Adsorbent from Aqueous Phase[J]. Chem Eng J, 2016,284:687-697. doi: 10.1016/j.cej.2015.08.131

    18. [18]

      Habiba U, Siddique T A, Joo T C. Synthesis of Chitosan/Polyvinyl Alcohol/Zeolite Composite for Removal of Methyl Orange, Congo Red and Chromium(VI) by Flocculation/Adsorption[J]. Carbohydr Polym, 2017,157:1568-1576. doi: 10.1016/j.carbpol.2016.11.037

    19. [19]

      Huang R H, Liu Q, Huo J. Adsorption of Methyl Orange onto Protonated Cross-Linked Chitosan[J]. Arab J Chem, 2017,10(1):24-32. doi: 10.1016/j.arabjc.2013.05.017

    20. [20]

      Ni Z M, Xia S J, Wang L G. Treatment of Methyl Orange by Calcined Layered Double Hydroxides in Aqueous Solution:Adsorption Property and Kinetic Studies[J]. J Colloid Interface Sci, 2007,316(2):284-291. doi: 10.1016/j.jcis.2007.07.045

    21. [21]

      Ling F L, Fang L, Lu Y. A novel CoFe Layered Double Hydroxides Adsorbent:High Adsorption Amount for Methyl Orange Dye and Fast Removal of Cr(VI)[J]. Micropor Mesopor Mater, 2016,234:230-238. doi: 10.1016/j.micromeso.2016.07.015

    22. [22]

      Haque E, Lee J E, Jang I T. Adsorptive Removal of Methyl Orange from Aqueous Solution with Metal-Organic Frameworks, Porous Chromium-Benzenedicarboxylates[J]. J Hazard Mater, 2010,181:535-542. doi: 10.1016/j.jhazmat.2010.05.047

    23. [23]

      Liu P F, Tao K, Li G C. In situ Growth of ZIF-8 Nanocrystals on Layered Double Hydroxide Nanosheets for Enhanced CO2 Capture[J]. Dalton Trans, 2016,45(32):12632-12635. doi: 10.1039/C6DT02083F

    24. [24]

      Hao L, Qiu Q, Li H. Directional Functionalization of MOF-74 Analogs via Ligand Pre-installation[J]. Chinese J Chem, 2016,34(2):220-224. doi: 10.1002/cjoc.201500597

    25. [25]

      Thanh N T, Thien T V, Du P D. Adsorptive Removal of Congo Red from Aqueous Solution Using Zeolitic Imidazolate Framework-67[J]. J Environ Eng, 2018,6(2):2269-2280.  

    26. [26]

      Tian T, Wharmby M T, Parra J B. Role of Crystal Size on Swing-Effect and Adsorption Induced Structure Transition of ZIF-8[J]. Dalton Trans, 2016,45(16):6893-6900. doi: 10.1039/C6DT00565A

    27. [27]

      Gao B, Zhou J, Wang H. Zeolitic Imidazolate Framework 8-Derived Au@ZnO for Efficient and Robust Photocatalytic Degradation of Tetracycline[J]. Chinese J Chem, 2019,37(2):148-154. doi: 10.1002/cjoc.201800440

    28. [28]

      Zhang J J, Yan X L, Hu X Y. Direct Carbonization of Zn/Co Zeolitic Imidazolate Frameworks for Efficient Adsorption of Rhodamine B[J]. Chem Eng J, 2018,347:640-647. doi: 10.1016/j.cej.2018.04.132

    29. [29]

      Yang Q X, Ren S S, Zhao Q Q. Selective Separation of Methyl Orange from Water Using Magnetic ZIF-67 Composites[J]. Chem Eng J, 2018,333:49-57. doi: 10.1016/j.cej.2017.09.099

    30. [30]

      Yu D, Wu B, Ge L. Decorating Nanoporous ZIF-67-derived NiCo2O4 Shells on a Co3O4 Nanowire Array Core for Battery-Type Electrodes with Enhanced Energy Storage Performance[J]. J Mater Chem, 2016,4(28):10878-10884. doi: 10.1039/C6TA04286D

    31. [31]

      Wang Q, Wang X F, Shi C L. LDH Nanoflower Lantern Derived from ZIF-67 and Its Application for Adsorptive Removal of Organics from Water[J]. Ind Eng Chem Res, 2018,57(37):12478-12484. doi: 10.1021/acs.iecr.8b01324

    32. [32]

      Chen N N, Chen D, Wei F H. Effect of Structures on the Adsorption Performance of Cobalt Metal Organic Framework Obtained by Microwave-Assisted Ball Milling[J]. Chem Phys Lett, 2018,705:23-30. doi: 10.1016/j.cplett.2018.05.051

    33. [33]

      Wang L, Wang A. Adsorption Characteristics of Congo Red onto the Chitosan/Montmorillonite Nanocomposite[J]. J Hazard Mater, 2007,147(3):979-985. doi: 10.1016/j.jhazmat.2007.01.145

    34. [34]

      He P, Yu X Y, Lou X W. Carbon-Incorporated Nickel-Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution[J]. Angew Chem Int Ed Engl, 2017,56(14):3897-3900. doi: 10.1002/anie.201612635

    35. [35]

      Zhang J, Hu H, Li Z. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Angew Chem Int Ed Engl, 2016,55(12):3982-3986. doi: 10.1002/anie.201511632

    36. [36]

      Gao J, Lu Y, Fang L. Efficient Removal of Methyl Orange and Heavy Metal Ion from Aqueous Solution by NiFe-Cl-Layered Double Hydroxide[J]. Environ Eng Sci, 2018,35(4):373-381. doi: 10.1089/ees.2017.0023

    37. [37]

      Li Z, Shao M, Zhou L. Directed Growth of Metal-Organic Frameworks and Their Derived Carbon-Based Network for Efficient Electrocatalytic Oxygen Reduction[J]. Adv Mater, 2016,28(12):2337-2344. doi: 10.1002/adma.201505086

    38. [38]

      Yang Y, Yan X, Hu X. Development of Zeolitic Imidazolate Framework-67 Functionalized Co-Al LDH for CO2 Adsorption[J]. Colloids Surf A, 2018,552:16-23. doi: 10.1016/j.colsurfa.2018.05.014

    39. [39]

      Li J, Lu S, Huang H. ZIF-67 as Continuous Self-Sacrifice Template Derived NiCo2O4/Co, N-CNTs Nanocages as Efficient Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries[J]. ACS Sustain Chem Eng, 2018,6(8):10021-10029. doi: 10.1021/acssuschemeng.8b01332

    40. [40]

      Chen Y, Jing C, Zhang X. Acid-Aalt Treated CoAl Layered Double Hydroxide Nanosheets with Enhanced Adsorption Capacity of Methyl Orange Dye[J]. J Colloid Interface Sci, 2019,548:100-109. doi: 10.1016/j.jcis.2019.03.107

    41. [41]

      Du X D, Wang C C, Liu J G. Extensive and Selective Adsorption of ZIF-67 Towards Organic Dyes:Performance and Mechanism[J]. J Colloid Interface Sci, 2017,506:437-441. doi: 10.1016/j.jcis.2017.07.073

    42. [42]

      Jiang D B, Yuan S, Cai X. Magnetic Nickel Chrysotile Nanotubes Tethered with pH-Sensitive Poly(Methacrylic Acid) Brushes for Cu(Ⅱ) Adsorption[J]. J Mol Liq, 2019,276:611-623. doi: 10.1016/j.molliq.2018.12.048

    43. [43]

      Zhang Z, Zhang J, Liu J. Selective and Competitive Adsorption of Azo Dyes on the Metal-Organic Framework ZIF-67[J]. Water Air Soil Pollut, 2016,227(12)471. doi: 10.1007/s11270-016-3166-7

  • 加载中
    1. [1]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    2. [2]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    3. [3]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    4. [4]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    5. [5]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    9. [9]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    10. [10]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    11. [11]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    12. [12]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    13. [13]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    14. [14]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    15. [15]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    16. [16]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    17. [17]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    18. [18]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    19. [19]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    20. [20]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

Metrics
  • PDF Downloads(3)
  • Abstract views(256)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return