Citation: QIAN Jin, HAO Yanzhong, LI Jingqi, PEI Juan, LI Yingpin. Preparation of TiO2 Branched Nanorod Array to Improve the Performance of Polymer Hybrid Solar Cell[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 695-702. doi: 10.11944/j.issn.1000-0518.2020.06.190329 shu

Preparation of TiO2 Branched Nanorod Array to Improve the Performance of Polymer Hybrid Solar Cell

  • Corresponding author: HAO Yanzhong, yzhao@hebust.edu.cn
  • Received Date: 10 December 2019
    Revised Date: 12 February 2020
    Accepted Date: 19 March 2020

    Fund Project: the Natural Science Foundation of Hebei Province of China B2014208066Supported by the National Natural Science Foundation of China(No.21173065, No.21603035), the Natural Science Foundation of Hebei Province of China(No.B2014208062, No.B2014208066)the National Natural Science Foundation of China 21173065the National Natural Science Foundation of China 21603035the Natural Science Foundation of Hebei Province of China B2014208062

Figures(10)

  • TiO2 nanorod arrays (NRA) and branched TiO2 nanorod arrays (B-NRA) were prepared on conducting glass (FTO) by one-step hydrothermal method and two-step hydrothermal method, respectively. Sb2S3 nanoparticles (NPs) are deposited on TiO2 NRA and TiO2 B-NRA substrates by low temperature chemical bath deposition (CBD). Poly(3-hexylthiophene-2, 5-diyl) and 2, 2', 7, 7'-tetrakis-(N, N-di-p-methoxyphenylamine)-9, 9'-spirobifluorene (P3HT and Spiro-OMeTAD) are spin-coated on the TiO2/Sb2S3 composite membrane successively to form TiO2(NRA)/Sb2S3/P3HT/Spiro-OMeTAD films and TiO2(B-NRA)/Sb2S3/P3HT/Spiro-OMeTAD films as photoactive layers of hybrid solar cells. The results show that the power conversion efficiency (PCE) of the hybrid solar cell assembled with TiO2(B-NRA)/Sb2S3/P3HT/Spiro-OMeTAD composite membrane structure is 2.92%, and the PCE of the hybrid solar cell assembled with TiO2(B-NRA)/Sb2S3/P3HT/Spiro-OMeTAD composite membrane structure is improved to 4.67%.
  • 加载中
    1. [1]

      Kalb J, Folger A, Scheu C. Non-equilibrium Growth Model of Fibrous Mesocrystalline Rutile TiO2 Nanorods[J]. J Cryst Growth, 2019,511:8-14. doi: 10.1016/j.jcrysgro.2019.01.024

    2. [2]

      Matus-Arrambide A, Mendoza-Jiménez R A, de Moure-Flores F. Poly-3-hexylthiophene Doped with Iron Disulfide Nanoparticles for Hybrid Solar Cells[J]. Int J Energ Res, 2019,43(8):3723-3731. doi: 10.1002/er.4527

    3. [3]

      Zhu M H, Deng Y X, Li W W. Preparation of Se-Based Solar Cell Using Spin-Coating Method in Ambient Condition[J]. Chinese Phys B, 2018,27(1)015202.  

    4. [4]

      Yang G, Zhang M, Dong D. TiO2 Based Sensor with Butterfly Wing Configurations for Fast Acetone Detection at Room Temperature[J]. J Mater Chem C, 2019,7(36):11118-11125. doi: 10.1039/C9TC03110C

    5. [5]

      Asapu R, Claes N, Ciocarlan R. Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2 Photocatalytic Systems[J]. ACS Appl Nano Mater, 2019,2(7):4067-4074. doi: 10.1021/acsanm.9b00485

    6. [6]

      Jouali A, Salhi A, Aguedach A. Photo-Catalytic Degradation of Methylene Blue and Reactive Blue 21 Dyes in Dynamic Mode Using TiO2 Particles Immobilized on Cellulosic Fibers[J]. J Photochem Photobiol A, 2019,383:112013-112020. doi: 10.1016/j.jphotochem.2019.112013

    7. [7]

      Kenmoe S, Spohr E. Photooxidation of Water on Pristine, S- and N-Doped TiO2(001) Nanotube Surfaces:A DFT+U Study[J]. J Phys Chem C, 2019,123(37):22691-22698. doi: 10.1021/acs.jpcc.9b01166

    8. [8]

      Yang L, Wang X, Mai X. Constructing Efficient Mixed-Ion Perovskite Solar Cells Based on TiO2 Nanorod Array[J]. J Colloid Interface Sci, 2019,534:459-468. doi: 10.1016/j.jcis.2018.09.045

    9. [9]

      Sun B, Su Z, Hao Y. Facile Fabrication of MoS2-P3HT Hybrid Microheterostructure with Enhanced Photovoltaic Performance in TiO2 Nanorod Array Based Hybrid Solar Cell[J]. Solid State Sci, 2019,94:92-98. doi: 10.1016/j.solidstatesciences.2019.05.021

    10. [10]

      Qiu J, Qiu Y, Yan K. All-solid-state Hybrid Solar Cells Based on a New Organometal Halide Perovskite Sensitizer and One-Dimensional TiO2 Nanowire Arrays[J]. Nanoscale, 2013,5(8):3245-3248. doi: 10.1039/c3nr00218g

    11. [11]

      Wu X, Liu P, Ma L. Two-Dimensional Modeling of TiO2 Nanowire Based Organic Inorganic Hybrid Perovskite Solar Cells[J]. Sol Energ Mat Sol C, 2016,152:111-117. doi: 10.1016/j.solmat.2016.03.017

    12. [12]

      Wang X, Li Z, Xu W. TiO2 Nanotube Arrays Based Flexible Perovskite Solar Cells with Transparent Carbon Nanotube Electrode[J]. Nano Energy, 2015,11:728-735. doi: 10.1016/j.nanoen.2014.11.042

    13. [13]

      Wang Q, Jin R, Jia C. Anodic TiO2 Nanotube Arrays Co-sensitized by Uniform Ag2S and Sb2S3 Nanoparticles as High-Efficiency Energy Materials for Solar Cells and Photocatalysts[J]. Ceram Int, 2017,43(1, Part A):507-512. doi: 10.1016/j.ceramint.2016.09.186

    14. [14]

      Wang X, Ni Q, Zeng D. Charge Separation in Branched TiO2 Nanorod Array Homojunction Aroused by Quantum Effect for Enhanced Photocatalytic Decomposition of Gaseous Benzene[J]. Appl Surf Sci, 2016,389:165-172. doi: 10.1016/j.apsusc.2016.07.090

    15. [15]

      Wang J, Wang X, Yan J. Enhanced Photoelectrochemical Properties of Ti3+ Self-doped Branched TiO2 Nanorod Arrays with Visible Light Absorption[J]. Materials, 2018,11(10):1791-1799. doi: 10.3390/ma11101791

    16. [16]

      Cho I S, Chen Z, Forman A J. Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production[J]. Nano Lett, 2011,11(11):4978-4984. doi: 10.1021/nl2029392

    17. [17]

      Fukumoto T, Moehl T, Niwa Y. Effect of Interfacial Engineering in Solid-State Nanostructured Sb2S3 Heterojunction Solar Cells[J]. Adv Energy Mater, 2013,3(1):29-33.  

    18. [18]

      Cardoso J C, Grimes C A, Feng X J. Fabrication of Coaxial TiO2/Sb2S3 Nanowire Hybrids for Efficient Nanostructured Organic-inorganic Thin Film Photovoltaics[J]. Chem Commun, 2012,48(22):2818-2820. doi: 10.1039/c2cc17573h

    19. [19]

      Chang J A, Rhee J H, Im S H. High-performance Nanostructured Inorganic-Organic Heterojunction Solar Cells[J]. Nano Lett, 2010,10(7):2609-2612. doi: 10.1021/nl101322h

    20. [20]

      Moon S J, Itzhaik Y, Yum J H. Sb2S3-Based Mesoscopic Solar Cell Using an Organic Hole Conductor[J]. J Phys Chem Lett, 2010,1(10):1524-1527. doi: 10.1021/jz100308q

    21. [21]

      Yong C C, Dong U L, Noh J H. Highly Improved Sb2S3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy[J]. Adv Funct Mater, 2014,24(23):3587-3592. doi: 10.1002/adfm.201304238

    22. [22]

      Hu A, Wang J, Qu S. Hydrothermal Growth of Branched Hierarchical TiO2 Nanorod Arrays for Application in Dye-sensitized Solar Cells[J]. J Mater Sci-Mater Electron, 2017,28(4):3415-3422. doi: 10.1007/s10854-016-5938-7

    23. [23]

      Li Y P, Wei Y N, Feng K N. P3HT:Spiro-OMeTAD Blending System as Hole Conductor for Solid-state Hybrid Solar Cells with TiO2 Dendritic/Sb2S3 Nanorods Composite Structure[J]. New J Chem, 2018,42(15):12754-12761. doi: 10.1039/C8NJ02094A

    24. [24]

      Fan X, Zhang M, Wang X. Recent Progress in Organic Inorganic Hybrid Solar Cells[J]. J Mater Chem A, 2013,1(31):8694-8709. doi: 10.1039/c3ta11200d

    25. [25]

      Yan W, Li Y, Li Y. High-performance Hybrid Perovskite Solar Cells With Open Circuit Voltage Dependence on Hole-Transporting Materials[J]. Nano Energy, 2015,16:428-437. doi: 10.1016/j.nanoen.2015.07.024

  • 加载中
    1. [1]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    6. [6]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    12. [12]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    17. [17]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    18. [18]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

Metrics
  • PDF Downloads(5)
  • Abstract views(1743)
  • HTML views(443)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return