Citation: ZHAO Bingbing, DENG Dongyang, CHEN Guihua, SONG Qingmei, FU Jianping, ZHANG Sukun, ZHOU Chengyong, Jü Yongming. Main Influencing Factors and Removal Mechanism of Phosphate Anions by Chitosan-Fe(Ⅲ) Composite Gel Beads[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 673-682. doi: 10.11944/j.issn.1000-0518.2020.06.190325 shu

Main Influencing Factors and Removal Mechanism of Phosphate Anions by Chitosan-Fe(Ⅲ) Composite Gel Beads

  • Corresponding author: ZHOU Chengyong, zcy826@126.com
  • Received Date: 29 November 2019
    Revised Date: 23 March 2020
    Accepted Date: 17 April 2020

    Fund Project: Supported by the Guangdong International Cooperation Project(No.2018A050506045), the Guangdong Natural Science Foundation(No.2018A030313226), and the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010969)the Guangdong Basic and Applied Basic Research Foundation 2020A1515010969the Guangdong Natural Science Foundation 2018A030313226the Guangdong International Cooperation Project 2018A050506045

Figures(11)

  • In order to improve the present situation of phosphorus pollution in environmental water, the chitosan iron (CS-Fe) composite gel beads were prepared by sol-titration-vacuum freeze drying method to remove phosphate from water. The morphology and structure of CS-Fe gel beads were characterized, and the factors affecting the adsorption of phosphate and the reaction mechanism were explored. The results show that the adsorption of phosphate by CS-Fe is a spontaneous, endothermic and entropy-increasing process, the adsorption process is in accordance with the pseudo first-order kinetic equation, the adsorption equilibrium time is 50 min, the maximum adsorption capacity calculated by Langmuir model is 23.97 mg/g, and the desorption efficiency is more than 90%. Fourier transform infrared (FT-IR), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Zeta potential analysis and X-ray photoelectron spectroscopy show that CS-Fe forms a honeycomb structure which is favorable for the rapid adsorption of phosphate, and the adsorption mechanism includes electrostatic adsorption and ion exchange. The adsorbent combines the adsorption properties of metal compounds with the characteristics of chitosan macromolecule, which is conducive to the construction of porous materials and improvement of the adsorption effect. Gel beads materials are more conducive to recovery, avoid secondary pollution, and have potential applications.
  • 加载中
    1. [1]

      Hamoudi S, Belkacemi K. Adsorption of Nitrate and Phosphate Ions from Aqueous Solutions Using Organically-Functionalized Silica Materials:Kinetic Modeling[J]. Fuel, 2013,110:107-113.  

    2. [2]

      Fagundes T, Bernardi E L, Rodrigues C A. Phosphate Adsorption on Chitosan-Fe-Ⅲ-Crosslinking:Batch and Column Studies[J]. J Liq Chromatogr Relat Technol, 2001,24:1189-1198. doi: 10.1081/JLC-100103441

    3. [3]

      Yang K, Yan L G, Yang Y M. Adsorptive Removal of Phosphate by Mg-Al and Zn-Al Layered Double Hydroxides:Kinetics, Isotherms and Mechanisms[J]. Sep Purif Technol, 2014,124(18):36-42.  

    4. [4]

      Huang W, Cai W, Huang H. Identification of Inorganic and Organic Species of Phosphorus and Its Bio-availability in Nitrifying Aerobic Granular Sludge[J]. Water Res, 2015,68:423-431. doi: 10.1016/j.watres.2014.09.054

    5. [5]

      Xu X, Gao B Y, Yue Q Y. Preparation of Agricultural by-Product Based Anion Exchanger and Its Utilization for Nitrate and Phosphate Removal[J]. Bioresour Technol, 2010,101(22):8558-8564. doi: 10.1016/j.biortech.2010.06.060

    6. [6]

      Yeoman S, Stephenson T, Lester J N. The Removal of Phosphorus During Wastewater Treatment:A Review[J]. Environ Pollut, 1988,49(3):183-233.  

    7. [7]

      Peng L, Dai H, Wu Y. A Comprehensive Review of Phosphorus Recovery from Wastewater by Crystallization Processes[J]. Chemosphere, 2018,197:768-781. doi: 10.1016/j.chemosphere.2018.01.098

    8. [8]

      Sowmya A, Meenakshi S. Removal of Phosphate from Aqueous Solution Using Hydrotalcite/Chitosan Composite[J]. J Chitin Chitosan Sci, 2013,1:1-8. doi: 10.1166/jcc.2013.1001

    9. [9]

      Yang G, Lee H L. Chemical Reduction of Nitrate by Nanosized Iron:Kinetics and Pathways[J]. Water Res, 2005,39(5):884-894. doi: 10.1016/j.watres.2004.11.030

    10. [10]

      Jayakumar R, Prabaharan M, Nair S V. Novel Carboxymethyl Derivatives of Chitin and Chitosan Materials and Their Biomedical Applications[J]. Prog Mater Sci, 2010,55(7):675-709. doi: 10.1016/j.pmatsci.2010.03.001

    11. [11]

      Farzana M H, Meenakshi S. Exploitation of Zinc Oxide Impregnated Chitosan Beads for the Photocatalytic Decolorization of an Azo Dye[J]. Int J Biol Macromol, 2015,72:900-910. doi: 10.1016/j.ijbiomac.2014.09.038

    12. [12]

      Viswanathan N, Meenakshi S. Selective Sorption of Fluoride Using Fe(Ⅲ) Loaded Carboxylated Chitosan Beads[J]. J Fluor Chem, 2008,129:503-509. doi: 10.1016/j.jfluchem.2008.03.005

    13. [13]

      Kumar I A, Viswanathan N. Development of Multivalent Metal Ions Imprinted Chitosan Biocomposites for Phosphate Sorption[J]. Int J Biol Macromol, 2017,104:1539-1547. doi: 10.1016/j.ijbiomac.2017.02.100

    14. [14]

      Dai J, Yang H, Yan H. Phosphate Adsorption from Aqueous Solutions by Disused Adsorbents:Chitosan Hydrogel Beads after the Removal of Copper(Ⅱ)[J]. Chem Eng J, 2011,166(3):970-977.  

    15. [15]

      Zavareh S, Behrouzi Z, Avanes A. Cu(Ⅱ) Binded Chitosan/Fe3O4 Nanocomomposite as a New Biosorbent for Efficient and Selective Removal of Phosphate[J]. Int J Biol Macromol, 2017,101:40-50. doi: 10.1016/j.ijbiomac.2017.03.074

    16. [16]

      Sowmya A, Meenakshi S. Zr(Ⅳ) Loaded Cross-linked Chitosan Beads with Enhanced Surface Area for the Removal of Nitrate and Phosphate[J]. Int J Biol Macromol, 2014,69:336-343. doi: 10.1016/j.ijbiomac.2014.05.043

    17. [17]

      Jiang H, Chen P, Luo S. Synthesis of Novel Nanocomposite Fe3O4/ZrO2/chitosan and Its Application for Removal of Nitrate and Phosphate[J]. Appl Surf Sci, 2013,284:942-949. doi: 10.1016/j.apsusc.2013.04.013

    18. [18]

      Zhang B, Chen N, Feng C. Adsorption for Phosphate by Crosslinked/Non-Crosslinked Chitosan Fe(Ⅲ) Complex Sorbents:Characteristic and Mechanism[J]. Chem Eng J, 2018,353:361-372. doi: 10.1016/j.cej.2018.07.092

    19. [19]

      Jiang Y J, Yu X Y, Luo T. γ-Fe2O3 Nanoparticles Encapsulated Millimeter-Sized Magnetic Chitosan Beads for Removal of Cr(Ⅵ) from Water:Thermodynamics, Kinetics, Regeneration, and Uptake Mechanisms[J]. J Chem Eng Data, 2013,58(11):3142-3149.

    20. [20]

      Qi J Y, Zhang G S, Li H N. Efficient Removal of Arsenic from Water Using a Granular Adsorbent:Fe-Mn Binary Oxide Impregnated Chitosan Bead[J]. Bioresour Technol, 2015,193:243-249. doi: 10.1016/j.biortech.2015.06.102

    21. [21]

      Sikder M T, Mihara Y, Islam M S. Preparation and Characterization of Chitosan-Caboxymethyl-β-Cyclodextrin Entrapped Nanozero-Valent Iron Composite for Cu(Ⅱ) and Cr(Ⅵ) Removal from Waste Water[J]. Chem Eng J, 2014,236:378-387.

    22. [22]

      Xie J, Li C, Chi L. Chitosan Modified Zeolite as a Versatile Adsorbent for the Removal of Different Pollutants from Water[J]. Fuel, 2013,103:480-485. doi: 10.1016/j.fuel.2012.05.036

    23. [23]

      Yoon S Y, Lee C G, Park J A. Kinetic, Equilibrium and Thermodynamic Studies for Phosphate Adsorption to Magnetic Iron Oxide Nanoparticles[J]. Chem Eng J, 2014,236:341-347. doi: 10.1016/j.cej.2013.09.053

    24. [24]

      Hui B, Zhang Y, Ye L. Preparation of PVA Hydrogel Beads and Adsorption Mechanism for Advanced Phosphate Removal[J]. Chem Eng J, 2014,235:207-214. doi: 10.1016/j.cej.2013.09.045

    25. [25]

      Zhang G, Liu H, Liu R. Removal of Phosphate from Water by a Fe-Mn Binary oxide Adsorbent[J]. J Colloid Interface Sci, 2009,335(2):168-174. doi: 10.1016/j.jcis.2009.03.019

    26. [26]

      Pan B, Wu J, Pan B. Development of Polymer-Based Nanosized Hydrated Ferric Oxides(HFOs) for Enhanced Phosphate Removal from Waste Effluents[J]. Water Res, 2009,43(17):4421-4429. doi: 10.1016/j.watres.2009.06.055

    27. [27]

      Xiong J, He Z, Mahmood Q. Phosphate Removal from Solution Using Steel Slag Through Magnetic Separation[J]. J Hazard Mater, 2008,152(1):211-215. doi: 10.1016/j.jhazmat.2007.06.103

    28. [28]

      Boujelben N, Bouzid J, Elouear Z. Phosphorus Removal from Aqueous Solution Using Iron Coated Natural and Engineered Sorbents[J]. J Hazard Mater, 2008,151(1):103-110. doi: 10.1016/j.jhazmat.2007.05.057

    29. [29]

      Mi F L, Wu S J, Lin F M. Adsorption of Copper(Ⅱ) Ions by a Chitosan-Oxalate Complex Biosorbent[J]. Int J Biol Macromol, 2015,72:136-144. doi: 10.1016/j.ijbiomac.2014.08.006

    30. [30]

      ZHANG Yizhong, LIU Shan, LIU Zhiwen. Comparison of Adsorption Behavior of Cu(Ⅱ) and Cr(Ⅵ) by Chitosan Gel Beads[J]. Chem Ind Eng Prog, 2017,36(2):712-719.  

    31. [31]

      DONG Yanming, XU Congyi, WANG Jianwei. Determination of the Degree of Substitution of N-Phthalic Chitosan by Infrared Spectroscopy[J]. Sci China Ser, 2001,31(2):153-160.  

    32. [32]

      Pearson F G, Marchessault R H, Jiang C Y. Infrared Spectra of Crystalline Polysaccharides. Ⅴ. Chitin[J]. J Polym Sci, 1960,43(141):101-116. doi: 10.1002/pol.1960.1204314109

    33. [33]

      Zhang J, Chen N, Tang Z. A Study of the Mechanism of Fluoride Adsorption from Aqueous Solutions onto Fe-Impregnated Chitosan[J]. Phys Chem Chem Phys, 2015,17(18):12041-12050.  

    34. [34]

      Zhou K, Wu B, Su L. Enhanced Phosphate Removal Using Nanostructured Hydrated Ferric-Zirconium Binary Oxide Confined in a Polymeric Anion Exchanger[J]. Chem Eng J, 2018,345:640-647. doi: 10.1016/j.cej.2018.01.091

    35. [35]

      Feng B, Peng J, Guo W. The Effect of Changes in pH on the Depression of Talc by Chitosan and the Associated Mechanisms[J]. Powder Technol, 2017,325:58-63.  

    36. [36]

      XIAO Hongwei, HUANG Chuanwei, FENG Yanfeng. Research Status and Development of Vacuum Freeze Drying Technology[J]. Chinese Med Equip J, 2010,31(7):30-32. doi: 10.3969/j.issn.1003-8868.2010.07.012

  • 加载中
    1. [1]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    2. [2]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    3. [3]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    12. [12]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    13. [13]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(8)
  • Abstract views(506)
  • HTML views(177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return