Citation: LI Weijia, MA Zhifang, XIN Zhirong, SHI Qiang. Application of Fe-Co Two-Dimension-Layered Double Hydroxide in Synergetic Therapy of Cancer[J]. Chinese Journal of Applied Chemistry, ;2020, 37(6): 627-634. doi: 10.11944/j.issn.1000-0518.2020.06.190322 shu

Application of Fe-Co Two-Dimension-Layered Double Hydroxide in Synergetic Therapy of Cancer

  • Corresponding author: MA Zhifang, zfma@ciac.ac.cn XIN Zhirong, Xinzhirong2012@126.com
  • Received Date: 28 November 2019
    Revised Date: 4 January 2020
    Accepted Date: 25 February 2020

    Fund Project: the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, CIAC, CAS 201620the National Natural Science Foundation of China 51573186the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, CIAC, CAS 201628the National Key Research and Development Program of China 2016YFC1100402the Natural Science Foundation of Shandong Province ZR2019MEM008Supported by the National Key Research and Development Program of China(No.2016YFC1100402), the National Natural Science Foundation of China(No.51573186, No.51973222), the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, CIAC, CAS(No.201620, No.201628), and the Natural Science Foundation of Shandong Province(No.ZR2019MEM008)the National Natural Science Foundation of China 51973222

Figures(5)

  • Photon therapy is a new selective cancer treatment technology which has been developed rapidly in recent years. It has the advantages of small trauma, good selectivity, low toxicity and no drug resistance. In this paper, we used hydrothermal synthesis method to prepare a new kind of layered Co-Fe double hydroxide nanosheet (Co-Fe-LDH) which has the characteristics of large specific surface area, high stability and good biocompatibility and is used to load photosensitizer IR783 (LDH-IR783) to realize the photothermal/photodynamic cooperative phototherapy of cancer under the stimulation of near-infrared laser. We characterized the composition, morphology, optical property, reactive oxygen species (ROS) generation and heat release of LDH-IR783 and tested its anticancer activity at the cellular and in vivo levels. The results indicate that the nanocomposite has a stable structure, high IR783 loading efficiency and good dispersibility, exhibits excellent photothermal/photodynamic effects under near-infrared light irradiation through producing considerable ROS and releasing heat rapidly to induce severe phototoxicity to cancer cells. Both in vitro and in vivo experiments display that the nanocomposite can effectively induce apoptosis of HeLa cells and significantly inhibit the growth of solid tumors without obvious side effects and damage to normal tissue. The preliminary results will provide new ideas for the design and application of photo-thermal/photodynamic synergistic drugs.
  • 加载中
    1. [1]

      Hughes D. Exploiting Genomics, Genetics and Chemistry to Combat Qntibiotic Resistance[J]. Nat Rev Gen, 2003,4(6):432-441. doi: 10.1038/nrg1084

    2. [2]

      Lee D E, Koo H, Sun I C. Multifunctional Nanoparticles for Multimodal Imaging and Theragnosis[J]. Chem Soc Rev, 2012,41(7):2656-2672. doi: 10.1039/C2CS15261D

    3. [3]

      Wistuba I I, Gelovani J G, Jacoby J J. Methodological and Practical Challenges for Personalized Cancer Therapies[J]. Nat Rev Clin Oncol, 2011,8(3):135-141. doi: 10.1038/nrclinonc.2011.2

    4. [4]

      Bown S G. Phototherapy in Tumors[J]. World J Surg, 1983,7(6):700-709. doi: 10.1007/BF01655209

    5. [5]

      Mou J, Lin T, Huang F. Black Titania-Based Theranostic Nanoplatform for Single NIR Laser Induced Dual-Modal Imaging-Guided PTT/PDT[J]. Biomaterials, 2016,84:13-24. doi: 10.1016/j.biomaterials.2016.01.009

    6. [6]

      Cheng L, Wang C, Feng L. Functional Nanomaterials for Phototherapies of Cancer[J]. Chem Rev, 2014,114(21):10869-10939. doi: 10.1021/cr400532z

    7. [7]

      Liu B, Li C, Cheng Z. Functional Nanomaterials for Near-Infrared-Triggered Cancer Therapy[J]. Biomater Sci, 2016,4(6):890-909. doi: 10.1039/C6BM00076B

    8. [8]

      Jaque D, Martinez Maestro L, del Rosal B. Nanoparticles for Photothermal Therapies[J]. Nanoscale, 2014,6(16):9494-9530. doi: 10.1039/C4NR00708E

    9. [9]

      Chen Q, Ke H, Dai Z. Nanoscale Theranostics for Physical Stimulus-Responsive Cancer Therapies[J]. Biomaterials, 2015,73:214-230. doi: 10.1016/j.biomaterials.2015.09.018

    10. [10]

      Jin C S, Lovell J F, Chen J. Ablation of Hypoxic Tumors with Dose-Equivalent Photothermal, but not Photodynamic, Therapy Using a Nanostructured Porphyrin Assembly[J]. ACS Nano, 2013,7(3):2541-2550. doi: 10.1021/nn3058642

    11. [11]

      Song X J, Chen Q, Liu Z. Recent Advances in the Development of Organic Photothermal Nano-Agents[J]. Nano Res, 2015,8(2):340-354. doi: 10.1007/s12274-014-0620-y

    12. [12]

      Marangon I, Menard-Moyon C, Silva A K A. Synergic Mechanisms of Photothermal and Photodynamic Therapies Mediated by Photosensitizer/Carbon Nanotube Complexes[J]. Carbon, 2016,97:110-123. doi: 10.1016/j.carbon.2015.08.023

    13. [13]

      Sherlock S P, Tabakman S M, Xie L. Photothermally Enhanced Drug Delivery by Ultrasmall Multifunctional FeCo/Graphitic Shell Nanocrystals[J]. ACS Nano, 2011,5(2):1505-1512. doi: 10.1021/nn103415x

    14. [14]

      Liu T, Wang C, Cui W. Combined Photothermal and Photodynamic Therapy Delivered by PEGylated MoS2 Nanosheets[J]. Nanoscale, 2014,6(19):11219-11225. doi: 10.1039/C4NR03753G

    15. [15]

      Gong H, Cheng L, Xiang J. Near-Infrared Absorbing Polymeric Nanoparticles as a Versatile Drug Carrier for Cancer Combination Therapy[J]. Adv Funct Mater, 2013,23(48):6059-6067. doi: 10.1002/adfm.201301555

    16. [16]

      Tian B, Wang C, Zhang S. Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide[J]. ACS Nano, 2011,5(9):7000-7009. doi: 10.1021/nn201560b

    17. [17]

      Sideris P J, Nielsen U G, Gan Z. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy[J]. Science, 2008,321(5885):113-117. doi: 10.1126/science.1157581

    18. [18]

      Hu G, O'Hare D. Unique Layered Double Hydroxide Morphologies Using Reverse Microemulsion Synthesis[J]. J Am Chem Soc, 2005,127(50):17808-17813. doi: 10.1021/ja0549392

    19. [19]

      Gareth R W, Aamir I K, O'Hare D. Mechanistic and Kinetic Studies of Guest Ion Intercalation into Layered Double Hydroxides Using Time-Resolved, In-Situ X-ray Powder Diffraction[J]. Struct Bond, 2006,119:161-192.  

    20. [20]

      Wang Q, O'Hare D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide(LDH) Nanosheets[J]. Chem Rev, 2012,112(7):4124-4155. doi: 10.1021/cr200434v

    21. [21]

      Dou Y, Zhang S, Pan T. TiO2@Layered Double Hydroxide Core-Shell Nanospheres with Largely Enhanced Photocatalytic Activity Toward O2Generation[J]. Adv Funct Mater, 2015,25(15):2243-2249. doi: 10.1002/adfm.201404496

    22. [22]

      Liang X, Zang Y, Xu Y. Sorption of Metal Cations on Layered Double Hydroxides[J]. Colloids A, 2013,433:122-131. doi: 10.1016/j.colsurfa.2013.05.006

    23. [23]

      Li B, Gu Z, Kurniawan N. Manganese-Based Layered Double Hydroxide Nanoparticles as a T1-MRI Contrast Agent with Ultrasensitive pH Response and High Relaxivity[J]. Adv Mater, 2017,291700373. doi: 10.1002/adma.201700373

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    3. [3]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    7. [7]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    10. [10]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    11. [11]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    12. [12]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    16. [16]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(11)
  • Abstract views(849)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return