Citation: WANG Jinying, QU Jiangying, LI Jielan, TANG Zhanlei, ZANG Yunhao, WANG Tao, GU Jianfeng, ZHOU Gang, GAO Feng. Two-Step Coating Synthesis of Silicon/Carbon Composite Based on Coal Tar Pitch and Its Lithium Battery Performance[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 562-569. doi: 10.11944/j.issn.1000-0518.2020.05.190306 shu

Two-Step Coating Synthesis of Silicon/Carbon Composite Based on Coal Tar Pitch and Its Lithium Battery Performance

  • Corresponding author: GAO Feng, fenggao2003@163.com
  • Received Date: 15 November 2019
    Revised Date: 3 January 2020
    Accepted Date: 20 February 2020

    Fund Project: the NSFC U1610114Supported by the NSFC(No.U1610114), the Natural Science Fund of Liaoning Province(No.201602458), and the Research Platform Project of Liaoning Province Department of Education(No.L201683657)the Research Platform Project of Liaoning Province Department of Education L201683657the Natural Science Fund of Liaoning Province 201602458

Figures(3)

  • Silicon/carbon (Si/C/C) composites based on the coal pitch was successfully prepared by a two-step method. Commercially available nano-silicon and coal pitch with low softening point, high carbon ratio and low price were used as the silicon and carbon sources, respectively. The electrochemical properties of the as-obtained composites as the negative electrode of the lithium ion batteries were systematically investigated. The results show that the obtained composite has a particle size in the range of 300 to 350 nm. The Si nanoparticles coated with C are bonded to each other to form a C-Si-C network structure, in which the silicon(27% mass fraction)/carbon composite (Si/C/C-27%) exhibits good lithium storage performance as a lithium battery electrode material. In addition, the Si/C/C-27% composite has a specific discharge capacity of 1281 mA·h/g at a current density of 0.1 A/g; at a current density of 3 A/g, the composite has a specific discharge capacity of 582 mA·h/g, showing good rate performance. The cycle efficiency retention of the product is 76.61% after 100 cycling times at the current density of 2 A/g, which also demonstrates its high stability. Compared with the one-step carbon-coated silicon(Si/C) material, Si/C/C material not only effectively improves the conductivity but inhibits the volume expansion of Si particles during lithiation and de-lithiation. This new proposed method provides a new research idea for preparing lithium ion battery anode materials with excellent electrochemical performance.
  • 加载中
    1. [1]

      Agyeman D A, Song K, Lee G H. Carbon-Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energy-Density Li-Ion Battery[J]. Adv Eng Mater, 2016,6(20)1600904.  

    2. [2]

      Jia H P, Zheng J M, Song J H. A Novel Ppproach to Synthesize Micrometer-Sized Porous Silicon as a High Performance Anode for Lithium-Ion Batteries[J]. Nano Energy, 2018,50:589-597.  

    3. [3]

      Wu H, Yu G, Pan L. Stable Li-Ion Battery Anodes by in-Situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanoparticles[J]. Nat Commun, 2013,41943.  

    4. [4]

      Zuo X, Zhu J, Mueller-Buschbaum P. Silicon Based Lithium-Ion Battery Anodes:A Chronicle Perspective Review[J]. Nano Energy, 2017,31:113-143.  

    5. [5]

      Chang J, Huang X, Zhou G. Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode[J]. Adv Mater, 2014,26(5):758-764.  

    6. [6]

      Nie P, Le Z, Chen G. Graphene Caging Silicon Particles for High-Performance Lithium-Ion Batteries[J]. Small, 2018,14(25)1800635.  

    7. [7]

      Liu R, Shen C, Dong Y. Sandwich-Like CNTs/Si/C Nanotubes as High Performance Anode Materials for Lithium-Ion Batteries[J]. J Mater Chem A, 2018,6(30):14797-14804.  

    8. [8]

      Shen D, Huang C, Gan L. Rational Design of Si@SiO2/C Composites Using Sustainable Cellulose as a Carbon Resource for Anodes in Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2018,10(9):7946-7954.  

    9. [9]

      Zhai W, Ai Q, Chen L. Walnut-Inspired Microsized Porous Silicon/Graphene Core-Shell Composites for High-Performance Lithium-Ion Battery Anodes[J]. Nano Res, 2017,10(12):4274-4283.  

    10. [10]

      Wu P, Wang H, Tang Y. Three-Dimensional Interconnected Network of Graphene-Wrapped Porous Silicon Spheres:In Situ Magnesiothermic-Reduction Synthesis and Enhanced Lithium-Storage Capabilities[J]. ACS Appl Mater Interfaces, 2014,6(5):3546-3552.  

    11. [11]

      Xu T, Wang D, Qiu P. In Situ Synthesis of Porous Si Dispersed in Carbon Nanotube Intertwined Expanded Graphite for High-Energy Lithium-Ion Battteries[J]. Nanoscale, 2018,10:16638-16644.  

    12. [12]

      ZHOU Yunhui, GU Xiaohu, LIN Xiongchao. Research Progress of Coal Tar Pitch-Based Carbon Materials[J]. Carbon Technol, 2019,38(2):1-5.  

    13. [13]

      CHENG Junxia, ZHU Yaming, GAO Lijuan. Analysis of Asphalt Molecular Structure of Coal-based Needle Coke Raw Materials by H-Nmr and Ft-Ir[J]. Carbon Technol, 2019,38(1):24-27.  

    14. [14]

      XIAO Nan, QIU Jieshan. Research Status and Prospects of Coal-Based Asphalt-Based Functional Carbon Materials[J]. Chem Prog, 2016,35(6):1804-1811.  

    15. [15]

      WANG Kai, GAO Chao, XING Huan. Preparation of Ultrapure Coal Pitch-Based Activated Carbon and Its Electrochemical Properties[J]. New Chem Mater, 2019,47(4):140-144.  

    16. [16]

      He X, Zhang H, Zhang H. Direct Synthesis of 3D Hollow Porous Graphene Balls from Coal Tar Pitch for High Performance Supercapacitors[J]. J Mater Chem A, 2014,2(46):19633-19640.  

    17. [17]

      Wang L, Wang J, Jia F. Nanoporous Carbon Synthesised with Coal Tar Pitch and Its Capacitive Performance[J]. J Mater Chem A, 2013,1(33)9498.  

    18. [18]

      FENG Xiaojiao, GUO Zhian, WANG Pei. Determination of Rubber Content in Modified Bitumen by High Performance Liquid Chromatography[J]. Chinese J Appl Chem, 2012,29(3):364-366.  

    19. [19]

      Chen H, Hou X, Chen F. Milled Flake Graphite/Plasma Nano-Silicon@Carbon Composite with Void Sandwich Structure for High Performance as Lithium Ion Battery Anode at High Temperature[J]. Carbon, 2018,130:433-440.  

    20. [20]

      He X, Zhao N, Qiu J. Synthesis of Hierarchical Porous Carbons for Supercapacitors from Coal Tar Pitch with Nano-Fe2O3 as Template and Activation Agent Coupled with Koh Activation[J]. J Mater Chem A, 2013,1(33)9440.  

    21. [21]

      Wang D, Wang Y, Chen Y. Coal Tar Pitch Derived N-Doped Porous Carbon Nanosheets by the in-Situ Formed G-C3N4 as a Template for Supercapacitor Electrodes[J]. Electrochim Acta, 2018,283:132-140.  

    22. [22]

      Sun W, Wan L, Li X. Bean Pod-Like Si@Dopamine-Derived Amorphous Carbon@N-Doped Graphene Nanosheet Scrolls for High Performance Lithium Storage[J]. J Mater Chem A, 2016,4(28):10948-10955.  

    23. [23]

      Xu C, Lindgren F, Philippe B. Improved Performance of the Silicon Anode for Li-Ion Batteries:Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive[J]. Chem Mater, 2015,27(7):2591-2599.  

    24. [24]

      Jia H P, Zheng J M, Song J H. A Novel Approach to Synthesize Micrometer-Sized Porous Silicon as a High Performance Anode for Lithium-Ion Batteries[J]. Nano Energy, 2018,50:589-597.  

    25. [25]

      Shen T, Xia X H, Xie D. Encapsulating Silicon Nanoparticles into Mesoporous Carbon Forming Pomegranate-Structure Microspheres as High Performance Anode for Lithium Ion Batteries[J]. J Mater Chem A, 2017,5(22):11197-11203.  

    26. [26]

      Zhou X M, Liu Y, Du C Y. Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible Rechargeable Lithium Ion Batteries[J]. ACS Appl Mater Interfaces, 2018,10:29638-29646.  

    27. [27]

      Song H, Wang H X, Lin Z. Highly Connected Silicon-Copper Alloy Mixture Nanotubes as High-Rate and Durable Anode Materials for Lithium-Ion Batteries[J]. Adv Funct Mater, 2016,26(4):524-531.  

    28. [28]

      Zhang Y C, You Y, Xin S. Rice Husk-Derived Hierarchical Silicon/Nitrogen-Doped Carbon/Carbon Nanotube Spheres as Low-Cost and High-Capacity Anodes for Lithium-Ion Batteries[J]. Nano Energy, 2016,25:120-127.  

    29. [29]

      Xie D, Wang D H, Tang W J. Binder-Free Network-Enabled MoS2-PPY-rGO Ternary Electrode for High Capacity and Excellent Stability of Lithium Storage[J]. J Power Sources, 2016,307:510-518.  

    30. [30]

      Dai F, Zai J, Yi R. Bottom-Up Synthesis of High Surface Area Mesoporous Crystalline Silicon and Evaluation of Its Hydrogen Evolution Performance[J]. Nat Commun, 2014,53605.  

    31. [31]

      Wang D, Gao M, Pan H. High Performance Amorphous-Si@SiOx/C Composite Anode Materials for Li-Ion Batteries Derived from Ball-Milling and in Situ Carbonization[J]. J Power Sources, 2014,256:190-199.  

    32. [32]

      Zhao L, Hu Y S, Li H. Porous Li4Ti5O12 Coated with N-Doped Carbon from Ionic Liquids for Li-Ion Batteries[J]. Adv Mater, 2011,23(11):1385-1388.  

    33. [33]

      Hu L, Luo B, Wu C H. Yolk-Shell Si/C Composites with Multiple Si Nanoparticles Encapsulated into Double Carbon Shells as Lithium-Ion Battery Anodes[J]. J Energy Chem, 2019,32:124-130.  

    34. [34]

      Sui D, Xie Y X, Zhao W M. A High-Performance Ternary Si Composite Anode Material with Crystal Graphite Core and Amorphous Carbon Shell[J]. J Power Sources, 2018,384:328-333.  

    35. [35]

      Zhang Y G, Du N, Zhu S J. Porous Silicon in Carbon Cages as High-Performance Lithium-Ion Battery Anode Materials[J]. Electrochim Acta, 2017,252:438-445.  

    36. [36]

      Wu P F, Guo C Q, Han J T. Fabrication of Double Core-Shell Si-based Anode Materials with Nanostructure for Lithium-Ion Battery[J]. RSC Adv, 2018,8(17):9094-9102.  

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    19. [19]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(3)
  • Abstract views(855)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return