Citation: WANG Wei, LI Juan, BAI Ru, HAN Zhen, FENG Xuewei, SUN Yue. Preparation of Au/Polyacrylamide@Graphene Oxide/ Nano-palladium Electrode via Metal-Free Visible-Light-Induced Atom Transfer Radical Polymerization and Its Detection of Ethanol[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 595-603. doi: 10.11944/j.issn.1000-0518.2020.05.190299 shu

Preparation of Au/Polyacrylamide@Graphene Oxide/ Nano-palladium Electrode via Metal-Free Visible-Light-Induced Atom Transfer Radical Polymerization and Its Detection of Ethanol

  • Corresponding author: SUN Yue, yuesun@lnnu.edu.cn
  • Received Date: 8 November 2019
    Revised Date: 3 January 2020
    Accepted Date: 19 February 2020

    Fund Project: the National Natural Science Foundation of China 21304041SSupported by the National Natural Science Foundation of China(No.21304041), the Dalian High-Level Talent Innovation Support Project(No.2016RQ047), the Science Research Project of Education Department of Liaoning Province(No.LQ2019022), and the Liaoning Normal University Innovation Training Program(No.201910165215)the Dalian High-Level Talent Innovation Support Project 2016RQ047the Science Research Project of Education Department of Liaoning Province LQ2019022the Liaoning Normal University Innovation Training Program 201910165215

Figures(6)

  • Polyacrylamide@graphene oxide/nano-palladium composite was prepared on the surface of gold electrode (Au/PAM@GO/Pd) by metal-free visible light-induced atom transfer radical polymerization (MVL ATRP). The Au/PAM@GO/Pd electrode was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results show that the composite is successfully prepared on the surface of the gold electrode. The Au/PAM@GO/Pd electrode could be used as an electrochemical sensor to detect ethanol by differential pulse voltammetry (DPV). Under the optimal conditions, the linear range is 1.0×10-8~1.0 mol/L, and the detection limit (S/N=3) is 1.3×10-9 mol/ L, with a coefficient of 0.996.
  • 加载中
    1. [1]

      Barhoumi L, Istrate O M, Rotariu L. Amperometric Determination of Ethanol Using a Novel Nanobiocomposite[J]. Anal Lett, 2017,51(3):323-335.  

    2. [2]

      Erfkamp J, Guenther M, Gerlach G. Hydrogel-based Piezoresistive Sensor for the Detection of Ethanol[J]. JSSS, 2018,7(1):219-226.  

    3. [3]

      Li C, Qin Y, Li D. A Highly Sensitive Enzyme Catalytic SERS Quantitative Analysis Method for Ethanol with Victoria Blue B Molecular Probe in the Stable Nanosilver Sol Substrate[J]. Sens Actuators B, 2018,255:3464-3471. doi: 10.1016/j.snb.2017.09.177

    4. [4]

      Wen Z, Song S, Wang C. Large-scale Synthesis of Dual-Emitting-Based Visualization Sensing Paper for Humidity and Ethanol Detection[J]. Sens Actuators, B, 2019,282:9-15. doi: 10.1016/j.snb.2018.11.041

    5. [5]

      Hong Y H, Zhou Z Y, Zhan M. Liquid-inlet Online Electrochemical Mass Spectrometry for the in Operando Monitoring of Direct Ethanol Fuel Cells[J]. Electrochem Commun, 2018,87:91-95. doi: 10.1016/j.elecom.2017.12.028

    6. [6]

      Qi M, Tu C, Dai Y. A Simple Colorimetric Analytical Assay Using Gold Nanoparticles for Specific Detection of Tetracycline in Environmental Water Samples[J]. Anal Methods, 2018,10(27):3402-3407. doi: 10.1039/C8AY00713F

    7. [7]

      Trivedi D, Crosse J, Tanti J. The Electrochemical Determination of Formaldehyde in Aqueous Media Using Nickel Modified Electrodes[J]. Sens Actuators, B, 2018,270:298-303. doi: 10.1016/j.snb.2018.05.035

    8. [8]

      Dou S, Tao L, Wang R. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy[J]. Adv Mater, 2018,30(21)1705850. doi: 10.1002/adma.201705850

    9. [9]

      Maluta J R, Machado S A S, Chaudhary U. Development of a Semigraphitic Sulfur-Doped Ordered Mesoporous Carbon Material for Electroanalytical Applications[J]. Sens Actuators B, 2018,257:347-353. doi: 10.1016/j.snb.2017.10.164

    10. [10]

      Liu Y, Turner A P F, Zhao M. Processable Enzyme-Hybrid Conductive Polymer Composites for Electrochemical Biosensing[J]. Biosens Bioelectron, 2018,100:374-381. doi: 10.1016/j.bios.2017.09.021

    11. [11]

      Hadi A, Hashim A. Novel Pressure Sensors Made from Nanocomposites (Biodegradable Polymers-Metal Oxide Nanoparticles):Fabrication and Characterization[J]. Ukr J Phys, 2018,63(8)754. doi: 10.15407/ujpe63.8.754

    12. [12]

      Turiel E, Martín-Esteban A. Molecularly Imprinted Polymers-based Microextraction Techniques[J]. TrAC, 2019,118:574-586.  

    13. [13]

      Wang H X, Liu H, Moore M J. Plastid Phylogenomic Insights into the Evolution of the Caprifoliaceae s.l.(Dipsacales)[J]. Mol Phylogenet Evol, 2020,142106641. doi: 10.1016/j.ympev.2019.106641

    14. [14]

      Sun Y, Fu L, Olszewski M. ATRP of N-Hydroxyethyl Acrylamide in the Presence of Lewis Acids:Control of Tacticity, Molecular Weight, and Architecture[J]. Macromol Rapid Commun, 2019,40(10)1800877. doi: 10.1002/marc.201800877

    15. [15]

      Sang W, Yan Q. Electro-Controlled Living Cationic Polymerization[J]. Angew Chem Int Ed, 2018,57(18):4907-4911. doi: 10.1002/anie.201712270

    16. [16]

      Yu Y G, Chae C G, Kim M J. Precise Synthesis of Bottlebrush Block Copolymers from ω-End-norbornyl Polystyrene and Poly(4-tert-butoxystyrene) via Living Anionic Polymerization and Ring-Opening Metathesis Polymerization[J]. Macromolecules, 2018,51(2):447-455. doi: 10.1021/acs.macromol.7b02447

    17. [17]

      Wang Z, Fei G, Xia H. Dual Water-Healable Zwitterionic Polymer Coatings for Anti-biofouling Surfaces[J]. J Mater Chem B, 2018,6(43):6930-6935. doi: 10.1039/C8TB01863D

    18. [18]

      Sun Y, Zhao M, Liu Y. Preparation of Erythromycin Imprinted Polymer by Metal-Free Visible-Light-Induced ATRP and Its Application in Sensor[J]. J Solid State Chem, 2018,23(2):583-590.  

    19. [19]

      Sun Y, Li S, Yang Y. Fabrication of a Thermal Responsive Hemoglobin(Hb) Biosensor via Hb-Catalyzed eATRP on the Surface of ZnO Nanoflowers[J]. J Solid State Chem, 2019,848113346.  

    20. [20]

      LIU Yutong, ZHAO Mengyuan, LI Siyu. Preparation of Molecularly Imprinted Polymers by Superoxide Dismutase-Catalyzed-Electrochemically Regulated Atom Transfer Radical Polymerization Method[J]. Chinese J Appl Chem, 2019,36(5):585-594.  

    21. [21]

      Sun Y, Zhang J, Li J. Preparation of Protein Imprinted Polymers via Protein-Catalyzed eATRP on 3D Gold Nanodendrites and Their Application in Biosensors[J]. RSC Adv, 2017,7(45):28461-28468. doi: 10.1039/C7RA03772D

    22. [22]

      Shen Z, Huang J, Xia Y. A Plasma-Initiated Graft Polymerization of Methyl Methacrylate in the Presence of a Reverse ATRP Catalyst[J]. Plasma Chem Plasma Process, 2018,39(1):293-309.  

    23. [23]

      Sun Y, Yang Y, Li S. Preparation of Myoglobin Imprinted Polymer via Myoglobin Catalyzed-eATRP on the Surface of Foam-Graphene[J]. J Electrochem Soc, 2019,166(14)B1251. doi: 10.1149/2.0231914jes

    24. [24]

      Sun Y, Li J, Zhao M. Preparation of Block Copolymers via Metal-Free Visible-Light-Induced ATRP for the Detection of Lead Ions[J]. J Appl Polym Sci, 2018,135(7)45863. doi: 10.1002/app.45863

    25. [25]

      WANG Yindian, ZHAO Changwen, MA Yuhong. Visible Light-Induced Living Graft Polymerization and Its Biological Applications[J]. J Beijing Univ Chem Technol(Nat Sci Ed), 2018,45(5):46-53.  

    26. [26]

      Zhou Y, Baaziz W, Ersen O. Decomposition of Supported Pd Hydride Nanoparticles for the Synthesis of Highly Dispersed Metallic Catalyst[J]. Chem Mater, 2018,30(22):8116-8120. doi: 10.1021/acs.chemmater.8b02192

    27. [27]

      Masteri-Farahani M, Mirshekar S. Covalent Functionalization of Graphene Oxide with Molybdenum-Carboxylate Complexes:New Reusable Catalysts for the Epoxidation of Olefins[J]. Colloids Surf A, 2018,538:387-392. doi: 10.1016/j.colsurfa.2017.11.025

    28. [28]

      Solomon E I, Stahl S S. Introduction:Oxygen Reduction and Activation in Catalysis[J]. Chem Rev, 2018,118(5):2299-2301. doi: 10.1021/acs.chemrev.8b00046

    29. [29]

      Zhong H, Iguchi M, Chatterjee M. Formic Acid-Based Liquid Organic Hydrogen Carrier System with Heterogeneous Catalysts[J]. Adv Sustainable Syst, 2018,2(2)1700161. doi: 10.1002/adsu.201700161

    30. [30]

      Araujo E N D, Brant J C, Archanjo B S. Quantum Corrections to Conductivity in Graphene with VACANCIEs[J]. Physica E, 2018,100:40-44. doi: 10.1016/j.physe.2018.02.025

    31. [31]

      Li Q, Ye X M, Ren D H. Thermal Spin Transport Properties of F/Cl Edge-Modified Zigzag Graphene Nanoribbons[J]. J Electron Mater, 2019,48(6):3958-3962. doi: 10.1007/s11664-019-07158-x

    32. [32]

      WEN Zhuliang, YANG Sudong, SONG Qijun. Electrocatalytic Oxidation of Ethanol on Graphene Supported Highly Active Pd Catalysts[J]. Acta Phys Sin, 2010,26(6):1570-1574. doi: 10.3866/PKU.WHXB20100620

    33. [33]

      Safavi A, Kazemi H, Kazemi S H. In situ Electrodeposition of Graphene/Nano-palladium on Carbon Cloth for Electrooxidation of Methanol in Alkaline Media[J]. J Power Sources, 2014,256:354-360. doi: 10.1016/j.jpowsour.2013.12.139

    34. [34]

      LI Pan, MIN Lijun, ZHANG Xi. Preparation and Performance of Graphene-Horseradish Peroxidase Modified Electrodes[J]. J Hainan Norm Univ(Nat Sci Ed), 2017,30(1):34-39.  

    35. [35]

      Jana N, Parbat D, Mondal B. A Biodegradable Polymer-Based Common Chemical Avenue for Optimizing Switchable, Chemically Reactive and Tunable Adhesive Superhydrophobicity[J]. J Mater Chem A, 2019,7(15):9120-9129. doi: 10.1039/C9TA01423C

    36. [36]

      Smirnov M A, Sokolova M P, Bobrova N V. Synergistic Effect of Chitin Nanofibers and Polyacrylamide on Electrochemical Performance of Their Ternary Composite with Polypyrrole[J]. J Energy Chem, 2018,27(3):843-853. doi: 10.1016/j.jechem.2017.06.002

    37. [37]

      Li H, Liu Z, Liang G. Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte[J]. ACS Nano, 2018,12(4):3140-3148. doi: 10.1021/acsnano.7b09003

    38. [38]

      Wang Y, Ding B H, Gao S Y. In vitro Corrosion of Pure Mg in Phosphate Buffer Solution-Influences of Isoelectric Point and Molecular Structure of Amino Acids[J]. Mater Sci Eng, C, 2019,105110042. doi: 10.1016/j.msec.2019.110042

    39. [39]

      Piloni A, Walther A, Stenzel M H. Compartmentalized Nanoparticles in Aqueous Solution Through Hierarchical Self-assembly of Triblock Glycopolymers[J]. Polym Chem, 2018,9(30):4132-4142. doi: 10.1039/C8PY00792F

    40. [40]

      Ma F, Nian J, Bi C. Preparation of Carboxylated Graphene Oxide for Enhanced Adsorption of U(VI)[J]. J Solid State Chem, 2019,277:9-16. doi: 10.1016/j.jssc.2019.05.042

    41. [41]

      Sun Y, Du H, Deng Y. Preparation of Polyacrylamide via Surface-Initiated Electrochemical-Mediated Atom Transfer Radical Polymerization(SI-eATRP) for Pb2+ Sensing[J]. J Solid State Electrochem, 2015,20(1):105-103.  

    42. [42]

      Shen K, Mei H, Li B. 3D Printing Sulfur Copolymer-Graphene Architectures for Li-S Batteries[J]. Adv Energy Mater, 2018,8(4)1701527. doi: 10.1002/aenm.201701527

    43. [43]

      Lai S C S, Kleijn S E F, Öztürk F T Z. Effects of Electrolyte pH and Composition on the Ethanol Electro-Oxidation Reaction[J]. Catal Today, 2010,154(1/2):92-104.  

    44. [44]

      Tavakolian E, Tashkhourian J, Razmi Z. Ethanol Electrooxidation at Carbon Paste Electrode Modified with Pd-ZnO Nanoparticles[J]. Sens Actuators, B, 2016,230:87-93. doi: 10.1016/j.snb.2016.02.006

    45. [45]

      Tao B, Zhang J, Hui S. An Amperometric Ethanol Sensor Based on a Pd-Ni/SiNWs Electrode[J]. Sens Actuators, B, 2009,142(1):298-303. doi: 10.1016/j.snb.2009.08.004

    46. [46]

      Wu L, McIntosh M, Zhang X. Amperometric Sensor for Ethanol Based on One-step Electropolymerization of Thionine-Carbon Nanofiber Nanocomposite Containing Alcohol Oxidase[J]. Talanta, 2007,74(3):387-392. doi: 10.1016/j.talanta.2007.09.023

    47. [47]

      Liu Y, Zhang L, Guo Q. Enzyme-free Ethanol Sensor Based on Electrospun Nickel Nanoparticle-Loaded Carbon Fiber Paste Electrode[J]. Anal Chim Acta, 2010,663(2):153-157.  

    48. [48]

      Shi J, Ci P, Wang F. Pd/Ni/Si-Microchannel-Plate-Based Amperometric Sensor for Ethanol Detection[J]. Electrochim Acta, 2011,56(11):4197-4202. doi: 10.1016/j.electacta.2011.01.096

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    11. [11]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    12. [12]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(2)
  • Abstract views(773)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return