Citation: LI Yuejun, CAO Tieping, SUN Dawei, ZHAO Yanhui, BAI Benang. Preparation of Ternary Ho3+-TiO2/Bi Plasmonic Composite Fibers for Photocatalytic H2 Production under Visible Light Irradiation[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 570-578. doi: 10.11944/j.issn.1000-0518.2020.05.190280 shu

Preparation of Ternary Ho3+-TiO2/Bi Plasmonic Composite Fibers for Photocatalytic H2 Production under Visible Light Irradiation

  • Corresponding author: CAO Tieping, bcctp2008@163.com
  • Received Date: 21 October 2019
    Revised Date: 20 December 2019
    Accepted Date: 19 February 2020

    Fund Project: the National Natural Science Foundation of China 21573003the Nation College Students Innovation and Entrepreneurship Training Program 201810206003Supported by the National Natural Science Foundation of China(No.21573003), the Nation College Students Innovation and Entrepreneurship Training Program(No.201810206003)

Figures(9)

  • Ternary Ho3+-TiO2/Bi plasmonic composite fibers were prepared via hydrothermal method employing electrospun Ho3+-TiO2 nanofibers as the substrate. The composition, morphology and photoelectric properties of the composite fibers were characterized by X-ray diffraction (XRD), X-ray photoelectric spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflection spectrum (UV-Vis DRS) and instantaneous photocurrent. The photocatalytic water splitting for hydrogen evolution was investigated over Ho3+-TiO2/Bi plasmonic composite fibers with triethanolamine as the donor residue. The results showed that Bi nanoparticles formed via reduction of Bi3+ by sodium gluconate during hydrothermal process, meanwhile the heterojunction grew on the Ho3+-TiO2 nanofibers surface. The enhanced photocatalytic activity of the Ho3+-TiO2/Bi plasmonic composites fibers can be further improved, which was mainly attributed to the formation of high-quality heterojunctions between Bi and rare earth Ho3+ doped titanium dioxide. Modification of TiO2 nanofibers effectively improved the photocatalytic activity and stability of the samples under visible light. The highest hydrogen production rate was 43.6 μmol/(g·h).
  • 加载中
    1. [1]

      Zhou C G, Wang S M, Zhao Z Y. A Facet-Dependent Schottky-Junction Electron Shuttle in a BiVO4{010}-Au-Cu2O Z-Scheme Photocatalyst for Efficient Charge Separation[J]. Adv Funct Mater, 2018,28(31):1801214-1801224.  

    2. [2]

      Yang J H, Guo Y Z, Jiang R B. High-Efficiency "Working-in-Tandem" Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets[J]. J Am Chem Soc, 2018,140(27):8497-8508.  

    3. [3]

      Patnaik S, Swain G, Parida K M. Highly Efficient Charge Transfer Through a Double Z-Scheme Mechanism by a Cu-Promoted MoO3/g-C3N4 Hybrid Nanocomposite with Superior Electrochemical and Photocatalytic Performance[J]. Nanoscale, 2018,10(13):5950-5964.  

    4. [4]

      YAO Guoying, LIU Qinglu, ZHAO Zongyan. Applications of Localized Surface Plasmon Resonance Effect in Photocatalysis[J]. Prog Chem, 2019,31(4):516-535.  

    5. [5]

      Tanaka A, Hashimoto K, Kominami H. A Very Simple Method for the Preparation of Au/TiO2 Plasmonic Photocatalysts Working Under Irradiation of Visible Light in the Range of 600~700 nm[J]. Chem Commun, 2017,53(35):4759-4762.  

    6. [6]

      Cheng W R, Su H, Tang F M. Synergetic Enhancement of Plasmonic Hot-Electron Injection in Au Cluster-Nanoparticle/C3N4 for Photocatalytic Hydrogen Evolution[J]. J Mater Chem A, 2017,5(37):19649-19655.  

    7. [7]

      Kumari G, Zhang X Q, Devasia D. Watching Visible Light-Driven CO2 Reduction on a Plasmonic Nanoparticle Catalyst[J]. ACS Nano, 2018,12(8):8330-8340.  

    8. [8]

      LIU Bing, GONG Huili, LIU Rui. One-Synthesis of TiO2-Au Composite and Its Performance for Photocatalytic Hydrogen Evolution[J]. Chinese J Appl Chem, 2019,36(9):1076-1084.  

    9. [9]

      QUAN Jingjing, QIN Dongdong, TAO Chunlan. Preparation and Photoelectrochemical Properties of Au Nanorods/Grapite Phase Carbon Nitride Composites[J]. Chinese J Appl Chem, 2018,35(5):574-581.  

    10. [10]

      Gavade N L, Babar S B, Kadam A N. Fabrication of M@CuxO/ZnO(M=Ag, Au) Heterostructured Nanocomposite with Enhanced Photocatalytic Performance under Sunlight[J]. Ind Eng Chem Res, 2017,56(49):14489-14501.  

    11. [11]

      Yang L, Pillai S, Green M A. Can Plasmonic Al Nanoparticles Improve Absorption in Triple Junction Solar Cells?[J]. Sci Rep, 2015,5:11852-11864.  

    12. [12]

      He W J, Sun Y J, Jiang G M. Defective Bi4MoO9/Bi Metal Core/Shell Heterostructure:Enhanced Visible Light Photocatalysis and Reaction Mechanism[J]. Appl Catal B:Environ, 2018,239:619-627.  

    13. [13]

      Wang H, Zhang W D, Li X W. Highly Enhanced Visible Light Photocatalysis and in situ FT-IR Studies on Bi Metal@defective BiOCl Hierarchical Microspheres[J]. Appl Catal B:Environ, 2018,225:218-227.  

    14. [14]

      Dong F, Zhao Z W, Sun Y J. An Advanced Semimetal Organic Bi Spheres g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification[J]. Environ Sci Technol, 2015,49(20):12432-12440.  

    15. [15]

      Qu L L, Luo Z J, Tang C. One Step Synthesis of Bi@Bi2O3@Carboxylate-Rich Carbon Spheres with Enhanced Photocatalytic Performance[J]. Mater Res Bull, 2013,48(11):4601-4605.  

    16. [16]

      LI Wenjin, YAO Weilong, XU Jiaxin. Preparation and Photocatalytic Properties of Ho3+ Doping BiFeO3[J]. Chinese J Appl Chem, 2019,36(1):91-96.  

    17. [17]

      Li Y Y, Dang L Y, Han L F. Iodine-sensitized Bi4Ti3O12/TiO2 Photocatalyst with Enhanced Photocatalytic Activity on Degradation of Phenol[J]. J Mol Catal A:Chem, 2013,379(15):146-151.  

    18. [18]

      Nyholm R, Berndtsson A, Martensson N. Core Level Binding Energies for the Elements Hf to Bi(Z=72-83)[J]. J Phys C:Solid Sate Phys, 1980,13:1091-1096.  

    19. [19]

      Xie F X, Mao X M, Fan C M. Facile Preparation of Sn-Doped BiOCl Photocatalyst with Enhanced Photocatalytic Activity for Benzoic Acid and Rhodamine B Degradation[J]. Mater Sci Semicond Process, 2014,27:380-389.  

    20. [20]

      Wang L L, Ma W H, Fang Y F. Bi4Ti3O12 Synthesized by High Temperature Solid Phase Method and It's Visible Catalytic Activity[J]. Procedia Environ Sci, 2013,18:547-558.  

    21. [21]

      Lazǎr C, Burzo E, Neumann M. XPS Study of RNi4B Compounds, Where R Nd, Tb, Dy, Ho and Er[J]. J Optoelectron Adv M, 2008,10(4):780-782.  

    22. [22]

      Ooka C, Yoshida H, Horio M. Adsorptive and Photocatalytic Performance of TiO2 Pillared Montmorillonite in Degradation of Endocrine Disruptors Having Different Hydrophobicity[J]. Appl Catal B:Environ, 2003,41:313-321.  

    23. [23]

      McMahon J M, Schatz G C, Gray S K. Plasmonics in the Ultraviolet with the Poor Metals Al, Ga, in, Sn, Tl, Pb, and Bi[J]. Phys Chem Chem Phys, 2013,15:5415-5423.  

    24. [24]

      Wang Z, Jiang C L, Huang R. Investigation of Optical and Photocatalytic Properties of Bismuth Nanospheres Prepared by a Facile Thermolysis Method[J]. J Phys Chem C, 2014,118(2):1155-1160.  

    25. [25]

      Toudert J, Serna R, Jiménez De Castro M. Exploring the Optical Potential of Nano-Bismuth:Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range[J]. J Phys Chem C, 2012,116(38):20530-20539.  

    26. [26]

      CAO Tieping, LI Yuejun, MEI Zhemin. Preparation of Bi/TiO2 Composite NFs with Visible-light Photocatalytic Activity[J]. Chinese J Inorg Chem, 2017,33(12):2225-2232.  

    27. [27]

      Zhang M Y, Shao C L, Liu Y C. One-Dimensional Bi2MoO6/TiO2 Hierarchical Heterostructures with Enhanced Photocatalytic Activit[J]. CrystEngComm, 2012,14(2):605-612.  

    28. [28]

      LIU Jia, PAN Rongrong, ZHANG Erhuan. Mechanistic Understanding of Plasmon-Induced Hot Electron Injection for Photocatalytic and Photoelectrochemical Solar-to-Fuel Generation[J]. Chinese J Appl Chem, 2018,35(8):890-901.  

    29. [29]

      Long R, Prezhdo O V. Instantaneous Generation of Charge-Separated State on TiO2 Surface Sensitized with Plasmonic Nanoparticles[J]. J Am Chem Soc, 2014,136(11):4343-4354.  

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    3. [3]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    12. [12]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    14. [14]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    15. [15]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    16. [16]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    17. [17]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    18. [18]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(2)
  • Abstract views(682)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return