Citation: LI Yuejun, CAO Tieping, SUN Dawei, ZHAO Yanhui, BAI Benang. Preparation of Ternary Ho3+-TiO2/Bi Plasmonic Composite Fibers for Photocatalytic H2 Production under Visible Light Irradiation[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 570-578. doi: 10.11944/j.issn.1000-0518.2020.05.190280 shu

Preparation of Ternary Ho3+-TiO2/Bi Plasmonic Composite Fibers for Photocatalytic H2 Production under Visible Light Irradiation

  • Corresponding author: CAO Tieping, bcctp2008@163.com
  • Received Date: 21 October 2019
    Revised Date: 20 December 2019
    Accepted Date: 19 February 2020

    Fund Project: the National Natural Science Foundation of China 21573003the Nation College Students Innovation and Entrepreneurship Training Program 201810206003Supported by the National Natural Science Foundation of China(No.21573003), the Nation College Students Innovation and Entrepreneurship Training Program(No.201810206003)

Figures(9)

  • Ternary Ho3+-TiO2/Bi plasmonic composite fibers were prepared via hydrothermal method employing electrospun Ho3+-TiO2 nanofibers as the substrate. The composition, morphology and photoelectric properties of the composite fibers were characterized by X-ray diffraction (XRD), X-ray photoelectric spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflection spectrum (UV-Vis DRS) and instantaneous photocurrent. The photocatalytic water splitting for hydrogen evolution was investigated over Ho3+-TiO2/Bi plasmonic composite fibers with triethanolamine as the donor residue. The results showed that Bi nanoparticles formed via reduction of Bi3+ by sodium gluconate during hydrothermal process, meanwhile the heterojunction grew on the Ho3+-TiO2 nanofibers surface. The enhanced photocatalytic activity of the Ho3+-TiO2/Bi plasmonic composites fibers can be further improved, which was mainly attributed to the formation of high-quality heterojunctions between Bi and rare earth Ho3+ doped titanium dioxide. Modification of TiO2 nanofibers effectively improved the photocatalytic activity and stability of the samples under visible light. The highest hydrogen production rate was 43.6 μmol/(g·h).
  • 加载中
    1. [1]

      Zhou C G, Wang S M, Zhao Z Y. A Facet-Dependent Schottky-Junction Electron Shuttle in a BiVO4{010}-Au-Cu2O Z-Scheme Photocatalyst for Efficient Charge Separation[J]. Adv Funct Mater, 2018,28(31):1801214-1801224.  

    2. [2]

      Yang J H, Guo Y Z, Jiang R B. High-Efficiency "Working-in-Tandem" Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets[J]. J Am Chem Soc, 2018,140(27):8497-8508.  

    3. [3]

      Patnaik S, Swain G, Parida K M. Highly Efficient Charge Transfer Through a Double Z-Scheme Mechanism by a Cu-Promoted MoO3/g-C3N4 Hybrid Nanocomposite with Superior Electrochemical and Photocatalytic Performance[J]. Nanoscale, 2018,10(13):5950-5964.  

    4. [4]

      YAO Guoying, LIU Qinglu, ZHAO Zongyan. Applications of Localized Surface Plasmon Resonance Effect in Photocatalysis[J]. Prog Chem, 2019,31(4):516-535.  

    5. [5]

      Tanaka A, Hashimoto K, Kominami H. A Very Simple Method for the Preparation of Au/TiO2 Plasmonic Photocatalysts Working Under Irradiation of Visible Light in the Range of 600~700 nm[J]. Chem Commun, 2017,53(35):4759-4762.  

    6. [6]

      Cheng W R, Su H, Tang F M. Synergetic Enhancement of Plasmonic Hot-Electron Injection in Au Cluster-Nanoparticle/C3N4 for Photocatalytic Hydrogen Evolution[J]. J Mater Chem A, 2017,5(37):19649-19655.  

    7. [7]

      Kumari G, Zhang X Q, Devasia D. Watching Visible Light-Driven CO2 Reduction on a Plasmonic Nanoparticle Catalyst[J]. ACS Nano, 2018,12(8):8330-8340.  

    8. [8]

      LIU Bing, GONG Huili, LIU Rui. One-Synthesis of TiO2-Au Composite and Its Performance for Photocatalytic Hydrogen Evolution[J]. Chinese J Appl Chem, 2019,36(9):1076-1084.  

    9. [9]

      QUAN Jingjing, QIN Dongdong, TAO Chunlan. Preparation and Photoelectrochemical Properties of Au Nanorods/Grapite Phase Carbon Nitride Composites[J]. Chinese J Appl Chem, 2018,35(5):574-581.  

    10. [10]

      Gavade N L, Babar S B, Kadam A N. Fabrication of M@CuxO/ZnO(M=Ag, Au) Heterostructured Nanocomposite with Enhanced Photocatalytic Performance under Sunlight[J]. Ind Eng Chem Res, 2017,56(49):14489-14501.  

    11. [11]

      Yang L, Pillai S, Green M A. Can Plasmonic Al Nanoparticles Improve Absorption in Triple Junction Solar Cells?[J]. Sci Rep, 2015,5:11852-11864.  

    12. [12]

      He W J, Sun Y J, Jiang G M. Defective Bi4MoO9/Bi Metal Core/Shell Heterostructure:Enhanced Visible Light Photocatalysis and Reaction Mechanism[J]. Appl Catal B:Environ, 2018,239:619-627.  

    13. [13]

      Wang H, Zhang W D, Li X W. Highly Enhanced Visible Light Photocatalysis and in situ FT-IR Studies on Bi Metal@defective BiOCl Hierarchical Microspheres[J]. Appl Catal B:Environ, 2018,225:218-227.  

    14. [14]

      Dong F, Zhao Z W, Sun Y J. An Advanced Semimetal Organic Bi Spheres g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification[J]. Environ Sci Technol, 2015,49(20):12432-12440.  

    15. [15]

      Qu L L, Luo Z J, Tang C. One Step Synthesis of Bi@Bi2O3@Carboxylate-Rich Carbon Spheres with Enhanced Photocatalytic Performance[J]. Mater Res Bull, 2013,48(11):4601-4605.  

    16. [16]

      LI Wenjin, YAO Weilong, XU Jiaxin. Preparation and Photocatalytic Properties of Ho3+ Doping BiFeO3[J]. Chinese J Appl Chem, 2019,36(1):91-96.  

    17. [17]

      Li Y Y, Dang L Y, Han L F. Iodine-sensitized Bi4Ti3O12/TiO2 Photocatalyst with Enhanced Photocatalytic Activity on Degradation of Phenol[J]. J Mol Catal A:Chem, 2013,379(15):146-151.  

    18. [18]

      Nyholm R, Berndtsson A, Martensson N. Core Level Binding Energies for the Elements Hf to Bi(Z=72-83)[J]. J Phys C:Solid Sate Phys, 1980,13:1091-1096.  

    19. [19]

      Xie F X, Mao X M, Fan C M. Facile Preparation of Sn-Doped BiOCl Photocatalyst with Enhanced Photocatalytic Activity for Benzoic Acid and Rhodamine B Degradation[J]. Mater Sci Semicond Process, 2014,27:380-389.  

    20. [20]

      Wang L L, Ma W H, Fang Y F. Bi4Ti3O12 Synthesized by High Temperature Solid Phase Method and It's Visible Catalytic Activity[J]. Procedia Environ Sci, 2013,18:547-558.  

    21. [21]

      Lazǎr C, Burzo E, Neumann M. XPS Study of RNi4B Compounds, Where R Nd, Tb, Dy, Ho and Er[J]. J Optoelectron Adv M, 2008,10(4):780-782.  

    22. [22]

      Ooka C, Yoshida H, Horio M. Adsorptive and Photocatalytic Performance of TiO2 Pillared Montmorillonite in Degradation of Endocrine Disruptors Having Different Hydrophobicity[J]. Appl Catal B:Environ, 2003,41:313-321.  

    23. [23]

      McMahon J M, Schatz G C, Gray S K. Plasmonics in the Ultraviolet with the Poor Metals Al, Ga, in, Sn, Tl, Pb, and Bi[J]. Phys Chem Chem Phys, 2013,15:5415-5423.  

    24. [24]

      Wang Z, Jiang C L, Huang R. Investigation of Optical and Photocatalytic Properties of Bismuth Nanospheres Prepared by a Facile Thermolysis Method[J]. J Phys Chem C, 2014,118(2):1155-1160.  

    25. [25]

      Toudert J, Serna R, Jiménez De Castro M. Exploring the Optical Potential of Nano-Bismuth:Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range[J]. J Phys Chem C, 2012,116(38):20530-20539.  

    26. [26]

      CAO Tieping, LI Yuejun, MEI Zhemin. Preparation of Bi/TiO2 Composite NFs with Visible-light Photocatalytic Activity[J]. Chinese J Inorg Chem, 2017,33(12):2225-2232.  

    27. [27]

      Zhang M Y, Shao C L, Liu Y C. One-Dimensional Bi2MoO6/TiO2 Hierarchical Heterostructures with Enhanced Photocatalytic Activit[J]. CrystEngComm, 2012,14(2):605-612.  

    28. [28]

      LIU Jia, PAN Rongrong, ZHANG Erhuan. Mechanistic Understanding of Plasmon-Induced Hot Electron Injection for Photocatalytic and Photoelectrochemical Solar-to-Fuel Generation[J]. Chinese J Appl Chem, 2018,35(8):890-901.  

    29. [29]

      Long R, Prezhdo O V. Instantaneous Generation of Charge-Separated State on TiO2 Surface Sensitized with Plasmonic Nanoparticles[J]. J Am Chem Soc, 2014,136(11):4343-4354.  

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(2)
  • Abstract views(515)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return