Citation: FAN Zhe, ZHANG Shengsheng, TANG Jiahao, FAN Ping. Structure, Preparation and Application of Graded Nanomaterials[J]. Chinese Journal of Applied Chemistry, ;2020, 37(5): 489-501. doi: 10.11944/j.issn.1000-0518.2020.05.190248 shu

Structure, Preparation and Application of Graded Nanomaterials

  • Corresponding author: FAN Ping, fanping@zjut.edu.cn
  • Received Date: 17 September 2019
    Revised Date: 9 December 2019
    Accepted Date: 10 February 2020

    Fund Project: Supported by the Natural Science Foundation of Zhejiang Province(No.LY17E030006)the Natural Science Foundation of Zhejiang Province LY17E030006

Figures(19)

  • Due to its unique surface effects, volume effects and quantum effects, nanomaterials have broad applications in the fields of chemical engineering, bioengineering, medicine, and energy. A number of studies have been carried out using simple low-dimensional nanostructures as the main building blocks to assemble into a regular ordered three-dimensional structure, i.e., hierarchical nanostructures, in a specific arrangement. In this paper, the research progress of hierarchical nanostructures is reviewed. The microstructure of graded nanomaterials and the preparation of graded nanostructures are introduced respectively. The applications of graded nanomaterials in wastewater treatment, supercapacitors, solar cells and photocatalysis are also prospected.
  • 加载中
    1. [1]

      May S J, Zheng J Y, Wessels B W. Dendritic Nanowire Growth Mediated by a Self-assembled Catalyst[J]. Adv Mater, 2005,17(5):598-602. doi: 10.1002/adma.200401332

    2. [2]

      Wang D, Qian F, Yang C. Rational Growth of Branched and Hyperbranched Nanowire Structure[J]. Nano Lett, 2004,4(5):871-874. doi: 10.1021/nl049728u

    3. [3]

      Suyatin D B, Hallstram W, Samuelson L. Gallium Phosphide Nanowire Arrays and Their Possible Application in Cellular Force Investigations[J]. J Vacuum SciTechnol B, 2009,27(6):3092-3094. doi: 10.1116/1.3264665

    4. [4]

      Wan Q, Dattolie N, Fung W Y. High-performance Transparent Conducting Oxide Nanowires[J]. Nano Lett, 2006,6(12):2909-2915. doi: 10.1021/nl062213d

    5. [5]

      Gao H J, Chen Y J, Li H L. Hierarchical Cu7S4-Cu9S8 Heterostructure Hollow Cubes for Photothermal Aerobic Oxidation of Amines[J]. Chem Eng J, 2019,363:247-258. doi: 10.1016/j.cej.2019.01.137

    6. [6]

      Wang J G, Xiao Q, Zhou H J. Budded, Mesoporous Silica Hollow Spheres:Hierarchical Structure Controlled by Kinetic Self-assembly[J]. Adv Mater, 2006,18(24)3284. doi: 10.1002/adma.200601321

    7. [7]

      Arora H, Du P, Tan K W. Block Copolymer Self-assembly-directed Single-crystal Homo and Heteroepitaxial Nanostructures[J]. Science, 2010,330(6001):214-219. doi: 10.1126/science.1193369

    8. [8]

      Yu J G, Su Y R, Cheng B. Template-free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania[J]. Adv Funct Mater, 2007,17(12):1984-1990. doi: 10.1002/adfm.200600933

    9. [9]

      Wang F, Zhao D X, Guo Z. Artificial Leaf Structures as a UV Detector Formed by the Self-assembly of ZnO Nanoparticles[J]. Nanoscale, 2013,5(7):2864-2869. doi: 10.1039/c3nr33748k

    10. [10]

      Liao J H, Bernard L, Langer M. Reversible Formation of Molecular Junctions in 2D Nanoparticle Arrays[J]. Adv Mater, 2006,18(18)2444. doi: 10.1002/adma.200601001

    11. [11]

      Cheng C W, Liu B, Yang H Y. Hierarchical Assembly of ZnO Nanostructures on SnO2 Backbone Nanowires:Low-Temperature Hydrothermal Preparation and Optical Properties[J]. ACS Nano, 2009,3(10):3069-3076. doi: 10.1021/nn900848x

    12. [12]

      Liu L J, Guan J G, Shi W D. Secondary Nucleation and Growth of ZnO[J]. J Am Chem Soc, 2007,129(51):15786-15793. doi: 10.1021/ja071209g

    13. [13]

      Peng B, Tan L F, Chen D. Programming Surface Morphology of TiO2 Hollow Spheres and Their Superhydrophilic Films[J]. ACS Appl Mater Interfaces, 2012,4(1):96-101. doi: 10.1021/am2009986

    14. [14]

      Li Y, Wang L L, Liang J. Hierarchical Heterostructure of ZnO@TiO2 Hollow Spheres for Highly Efficient Photocatalytic Hydrogen Evolution[J]. Nanoscale Res Lett, 2017,12531. doi: 10.1186/s11671-017-2304-5

    15. [15]

      Wang H K, Kalytchuk S, Yang H H. Hierarchical Growth of SnO2 Nanostructured Films on FTO Substrates:Structural Defects Induced by Sn(II) Self-doping and Their Effects on Optical and Photoelectrochemical Properties[J]. Nanoscale, 2014,6(11):6084-6091. doi: 10.1039/c4nr00672k

    16. [16]

      Liu X X, Xiong Y J, Li Z Q. Large-scale Fabrication of TiO2 Hierarchical Hollow Spheres[J]. Inorg Chem, 2006,45(9):3493-3495. doi: 10.1021/ic0602502

    17. [17]

      Yan W W, Fang M, Tan X L. Template-free Fabrication of SnO2 Hollow Spheres with Photoluminescence from Sni[J]. Mater Lett, 2010,64(19):2033-2035. doi: 10.1016/j.matlet.2010.06.070

    18. [18]

      DU Guofeng, ZHAO Kang, QIN Guohui. Research Progress on SnO2 Hierarchical Nanostructures[J]. Electron Compon Mater, 2014,33(11):29-35.  

    19. [19]

      Yin J Z, Wang X F, Li R Q. Synthesis and Characterization of Hierarchical SnO2 Hollow Octahedra[J]. Mater Lett, 2013,113:118-121. doi: 10.1016/j.matlet.2013.09.058

    20. [20]

      Li X B, Wang X W, Shen Q. Controllable Low-Temperature Chemical Vapor Deposition Growth and Morphology Dependent Field Emission Property of SnO2 Nanocone Arrays with Different Morphologies[J]. ACS Appl Mater Interfaces, 2013,5(8):3033-3041. doi: 10.1021/am303012u

    21. [21]

      Chen B, Lu K. Hierarchically Branched Titania Nanotubes with Tailored Diameters and Branch Numbers[J]. Langmuir, 2012,28(5):2937-2943. doi: 10.1021/la204154h

    22. [22]

      Jiang Q P, Li Y H, Du G F. A Novel Structure of SnO2 Nanorod Arrays Synthesized via a Hydrothermal Method[J]. Mater Lett, 2013,105:95-97. doi: 10.1016/j.matlet.2013.04.033

    23. [23]

      Kuang Q, Jiang Z Y, Xie Z X. Tailoring the Optical Property by a Three-Dimensional Epitaxial Heterostructure:A Case of ZnO/SnO2[J]. J Am Chem Soc, 2005,127(33):11777-11784. doi: 10.1021/ja052259t

    24. [24]

      Zhou W, Cheng C, Liu J P. Lithium-Ion Batteries:Epitaxial Growth of Branched α-Fe2O3/SnO2 Nano-heterostructures with Improved Lithium-Ion Battery Performance[J]. Adv Funct Mater, 2011,21(13):2439-2445. doi: 10.1002/adfm.201100088

    25. [25]

      Liu J P, Jiang J, Chen C W. Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/shell Arrays:A New Class of High-performance Pseudocapacitive Materials[J]. Adv Mater, 2011,23(18):2076-2081. doi: 10.1002/adma.201100058

    26. [26]

      Xia X H, Tu J P, Zhang Y Q. High-quality Metal Oxide Core/shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage[J]. ACS Nano, 2012,6(6):5531-5538. doi: 10.1021/nn301454q

    27. [27]

      Dey S, Podder S, Roychowdhury A. Facile Synthesis of Hierarchical Nickel(III) Oxide Nanostructure:A Synergistic Remediating Action Towards Water Contaminants[J]. J Environ Manage, 2018,211:356-366. doi: 10.1016/j.jenvman.2018.01.009

    28. [28]

      MOU Fangzhi. New Preparation Technology and Properties of Complex Micro-nanostructures of Metal Oxides[D]. Wuhan: Wuhan University of Technology, 2012(in Chinese). 

    29. [29]

      Mai L Q, Fan Y, Zhao Y L. Hierarchical MnMoO4/CoMoO4Heterostructured Nanowires with Enhanced Supercapacitor Performance[J]. Nat Commun, 2011,2381. doi: 10.1038/ncomms1387

    30. [30]

      Wang X X, Xu M, Fu Y L. A Highly Conductive and Hierarchical PANI Micro/Nanostructure and Its Supercapacitor Application[J]. Electrochim Acta, 2016,222:701-708. doi: 10.1016/j.electacta.2016.11.026

    31. [31]

      Bao L, Zang J, Li X. Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-performance Supercapacitor Electrodes[J]. Nano Lett, 2011,11(3):1215-1220. doi: 10.1021/nl104205s

    32. [32]

      Hou Y, Cheng Y, Hobson T. Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes[J]. Nano Lett, 2010,10(7):2727-2733. doi: 10.1021/nl101723g

    33. [33]

      Fan P, Fan Z, Huang F L. GO@PolyanilineNanorod Array Hierarchical Structure:A Photothermal Agent with High Photothermal Conversion Efficiency for Fast Near-infrared Responsive Hydrogels[J]. Ind Eng Chem Res, 2019,58(9):3893-3901. doi: 10.1021/acs.iecr.8b05346

    34. [34]

      Sudhagar P, Song T, Dong H L. High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si/ZnO Branched Hierarchical Structures[J]. J Phys Chem Lett, 2011,2(16):1984-1990. doi: 10.1021/jz200848v

    35. [35]

      Salant A, Shalom M, Tachan Z. Quantum Rod-Sensitized Solar Cell:Nanocrystal Shape Effect on the Photovoltaic Properties[J]. Nano Lett, 2012,12(4)2095. doi: 10.1021/nl300356e

    36. [36]

      Li P, Lim X, Zhu Y. Tailoring Wettability Change on Aligned and Patterned Carbon Nanotube Films for Selective Assembly[J]. J Phys Chem B, 2007,111(7):1672-1678. doi: 10.1021/jp066781t

    37. [37]

      Luo C, Zuo X, Wang L. Flexible Carbon Nanotube Polymer Composite Films with High Conductivity and Superhydrophobicity Made by Solution Process[J]. Nano Lett, 2008,8(12):4454-4458. doi: 10.1021/nl802411d

    38. [38]

      Dhindsa M S, Smith N R, Heikenfeld J. Reversible Electrowetting of Vertically Aligned Superhydrophobic Carbon Nanofibers[J]. Langmuir, 2006,22(21):9030-9034. doi: 10.1021/la061139b

    39. [39]

      Gao N, Yan Y, Gao N. Modeling Superhydrophobic Contact Angles and Wetting Transition[J]. J Bionic Eng, 2009,6(4):335-340. doi: 10.1016/S1672-6529(08)60135-3

    40. [40]

      Zhi C, Feng L, Hao L. One-step Electrodeposition Process to Fabricate CathodicSuperhydrophobic Surface[J]. Appl Surf Sci, 2011,258(4):1395-1398. doi: 10.1016/j.apsusc.2011.09.086

    41. [41]

      GONG Maogang, XU Xixoliang, YANG Zhou. Preparation of Superhydrophobic ZnO Nanorod Film by Hydrothermal Method[J]. Funct Mater, 2008,11:1906-1908. doi: 10.3321/j.issn:1001-9731.2008.11.040

    42. [42]

      Wang D, Guo Z, Chen Y. In Situ Hydrothermal Synthesis of Nanolamellate CaTiO3 with Controllable Structures and Wettability[J]. Inorg Chem, 2007,46(19):7707-7709. doi: 10.1021/ic700777f

    43. [43]

      Feng X J, Zhai J, Jiang L. The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films[J]. Angew Chem Int Edit, 2005,44(32):5115-5518. doi: 10.1002/anie.200501337

    44. [44]

      Shi F, Chen X X, Wang L Y. Roselike Microstructures Formed by Direct In Situ Hydrothermal Synthesis:From Superhydrophilicity to Superhydrophobicity[J]. Chem Mat, 2005,17(24):6177-6180. doi: 10.1021/cm051453b

    45. [45]

      Fan P, Chen J Y, Yang J T. GO@Cu Silicate Nano-needle Arrays Hierarchical Structure:A New Route to Prepare High Optical Transparent, Excellent Self-cleaning and Anticorrosion Superhydrophobic Surface[J]. J Nanopart Res, 2017,19(2)36. doi: 10.1007/s11051-016-3676-7

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    12. [12]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    16. [16]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    20. [20]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

Metrics
  • PDF Downloads(75)
  • Abstract views(3872)
  • HTML views(1414)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return