Citation: XU Chenxi, CAO Minghan, PENG Jing, LI Jiuqiang, ZHAI Maolin. Modification of Cellulose Triacetate Membranes with Glycidyl Methacrylate via γ-Ray Initiated Controlled Grafting[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 293-300. doi: 10.11944/j.issn.1000-0518.2020.03.190283 shu

Modification of Cellulose Triacetate Membranes with Glycidyl Methacrylate via γ-Ray Initiated Controlled Grafting

  • Corresponding author: PENG Jing, jpeng@pku.edu.cn ZHAI Maolin, mlzhai@pku.edu.cn
  • Received Date: 23 October 2019
    Revised Date: 19 November 2019
    Accepted Date: 28 November 2019

    Fund Project: the Joint Fund of the National Natural Science Foundation of China and China Academy of Engineering Physics(NSAF) U1430234Supported by the Joint Fund of the National Natural Science Foundation of China and China Academy of Engineering Physics(NSAF)(No.U1430234)

Figures(7)

  • Cellulose triacetate (CTA) is a kind of cellulose derivatives with high strength, and the modified CTA can be applied in the separation, adsorption and sensors, however, it is difficult to modify it by chemical initiated grafting. In this article, CTA membranes were successfully modified with poly(glycidyl methacrylate) (PGMA) by the combination of radiation-initiated grafting and the reversible addition-fragmentation chain transfer (RAFT) polymerization method. Effects of absorbed dose, concentration of GMA and amount of RAFT agent on degree of grafting were studied. The structure, morphology and surface property of the CTA membranes before and after grafting were investigated by Flourier transform infrared spectrometer (FT-IR), scanning electronic microscopy (SEM) and contact angle test. The results show that, for a higher degree of grafting and better morphology, the optimal conditions could be found at absorbed dose of 10~12 kGy, with mass fraction 30% of GMA and molar ratio 1/400 of RAFT agent and GMA. The grafted CTA membrane with the highest degree of grafting (41%) and the narrow distribution of relative molecular mass (1.33) can be obtained under suitable conditions. After grafting, the hydrophobicity of CTA membranes increases. The work provides a simple method to prepare grafted CTA with controlled structures. Compared with traditional radiation-initiated grafting, the radiation-initiated RAFT reaction conditions are easier to be controlled in RAFT-mediated grafting process, and the grafted polymer chains are better-distributed, which benefits further functionalization and practical application of modified CTA membranes.
  • 加载中
    1. [1]

      Siro I, Plackett D. Microfibrillated Cellulose and New Nanocomposite Materials:A Review[J]. Cellulose, 2010,17(3):459-494. doi: 10.1007/s10570-010-9405-y

    2. [2]

      Nguyen H, Wang M, Hsiao M. Suppression of Crystallization in Thin Films of Cellulose Diacetate and Its Effect on CO2/CH4 Separation Properties[J]. J Membr Sci, 2019,586:7-14. doi: 10.1016/j.memsci.2019.05.039

    3. [3]

      LIU Junshao, LIU Ruilai, ZHAO Jinyun. Fabrication of Triacetate Cellulose Nanofiber Membranes and Their Application for Oil-Water Separation[J]. Chinese J Appl Chem, 2017,34(5):512-518.  

    4. [4]

      Qasim M, Badrelzaman M, Darwish N N. Reverse Osmosis Desalination:A State-of-the-Art Review[J]. Desalination, 2019,459:59-104. doi: 10.1016/j.desal.2019.02.008

    5. [5]

      Jia R, Tian W, Bai H. Amine-Responsive Cellulose-Based Ratiometric Fluorescent Materials for Real-Time and Visual Detection of Shrimp and Crab Freshness[J]. Nat Comm, 2019,10795. doi: 10.1038/s41467-019-08675-3

    6. [6]

      Olaru N, Anghel N, Pascariu P. Synthesis and Testing of Cellulose Acetate Nicotinate as Adsorbent for Rhodamine B Dye[J]. J Appl Polym Sci, 2019,136(29)47772. doi: 10.1002/app.47772

    7. [7]

      Wang J, Lei P, Liu Z H. Preparation, Characterization and Properties of Cellulose Acetate-Grafted-Poly(Glycidyl Methacrylate) Copolymers[J]. J Macromol Sci A, 2015,52:226-233. doi: 10.1080/10601325.2015.996945

    8. [8]

      SHA Chenjie, BAI Fudong, FANG Xiangchen. Synthesis and Characterization of Polyethylene Terephthalate and Cellulose Diacetate Grafted Copolymer[J]. Mater Rep, 2015,29(S2):421-423.  

    9. [9]

      Wojnarovits L, Foldvary C M, Takacs E. Radiation-Induced Grafting of Cellulose for Adsorption of Hazardous Water Pollution:A Review[J]. Radiat Phys Chem(Oxford, England:1993), 2010,79(8):848-862.  

    10. [10]

      Barsbay M, Kodama Y, Güven O. Functionalization of Cellulose with Epoxy Groups via γ-Initiated RAFT-Mediated Grafting of Glycidyl Methacrylate[J]. Cellulose, 2014,21(6):4067-4079. doi: 10.1007/s10570-014-0416-y

    11. [11]

      Madrid J F, Ueki Y, Abad L V. RAFT-Mediated Graft Polymerization of Glycidyl Methacrylate in Emulsion from Polyethylene/Polypropylene Initiated with γ-Radiation[J]. J Appl Polym Sci, 2017,134(36)45270. doi: 10.1002/app.45270

    12. [12]

      Barsbay M, Güven O. RAFT Mediated Grafting of Poly(Acrylic Acid)(PAA) from Polyethylene/Polypropylene(PE/PP) Nonwoven Fabric via Preirradiation[J]. Polymer, 2013,54:4838-4848. doi: 10.1016/j.polymer.2013.06.059

    13. [13]

      PENG Jing, HAO Yan, WEI Genshuan. Basic Course of Radiation Chemistry[M]. Beijing:Peking University Press, 2015:255-262(in Chinese).

    14. [14]

      Moad G, Rizzardo E, Thang S H. Living Radical Polymerization by the RAFT Process-A Second Update[J]. Aust J Chem, 2009,62(11):1402-1472. doi: 10.1071/CH09311

    15. [15]

      Chiefari J, Chong Y, Ercole F. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process[J]. Macromolecules, 1998,31(16):5559-5562. doi: 10.1021/ma9804951

    16. [16]

      Yang H, Xue S, Pan J. Preparation of Core-Shell Attapulgite Particles by Redox-Initiated Surface Reversible Addition-Fragmentation Chain Transfer Polymerization via a "Graft from" Approach[J]. RSC Adv, 2016,6(17):14120-14127. doi: 10.1039/C5RA25078A

    17. [17]

      Anirudhan T S, Senan P. Adsorptive Potential of Sulfonated Poly(Glycidyl Methacrylate)-Grafted Cellulose for Separation of Lysozyme from Aqueous Phase:Mass Transfer Analysis, Kinetic and Equilibrium Profiles[J]. Colloid Surf A, 2011,377(1/2/3):156-166.  

  • 加载中
    1. [1]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    8. [8]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    14. [14]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    20. [20]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

Metrics
  • PDF Downloads(4)
  • Abstract views(2140)
  • HTML views(402)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return