Citation: ZHANG Shuang, ZHANG Long. Dehydration of Fructose into 5-Hydroxymethylfurfural Catalyzed by Ethylene Tar Char Sulfonic Acid[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 314-321. doi: 10.11944/j.issn.1000-0518.2020.03.190278 shu

Dehydration of Fructose into 5-Hydroxymethylfurfural Catalyzed by Ethylene Tar Char Sulfonic Acid

  • Corresponding author: ZHANG Long, zhanglongzhl@163.com
  • Received Date: 18 October 2019
    Revised Date: 3 December 2019
    Accepted Date: 25 December 2019

    Fund Project: the "Thirteen Five Years" Science and Technology Project of the Education Department of Jilin Province JJKH20190835KJSupported by the "Thirteen Five Years" Science and Technology Project of the Education Department of Jilin Province(No.JJKH20190835KJ)

Figures(10)

  • Ethylene tar char sulfonic acid was prepared by crosslinking and sulfonating method with the heavy components of ethylene tar after distillation as the raw material. The structure and properties of the catalyst were characterized by Flourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA-DTG), and scanning electron microscopy (SEM). The results showed that the catalyst presented an amorphous graphite carbon structure and high acid content (4.20 mmol/g). The sulfonic acid functional group on the surface was the key active center. The catalyst was used for the dehydration of fructose into 5-hydroxymethylfurfural (5-HMF). At the reaction time of 140 min, temperatureat of 130℃, the catalyst dosage of 0.3 g, the solvent dosage of 8 mL and the additive dosage of 0.3 g, the conversion of fructose and the yield of 5-HMF were 96.2% and 52.1%, respectively. The purity of 5-HMF obtained by separation was 97.0%. The conversion of fructose and the yield of 5-HMF remained above 85.1% and 40.8% after the catalyst was recycled five times.
  • 加载中
    1. [1]

      Hara M, Yoshida T, Takagaki A. A Carbon Material as a Strong Protonic Acid[J]. Angew Chem Int Ed, 2004,116(22):3015-3018.  

    2. [2]

      Toda M, Takagaki A, Okamura M. Green Chemistry-Biodiesel Made with Sugar Catalyst[J]. Nature, 2005,438(7065):178-178.  

    3. [3]

      Gao S, Liang X, Yang J. High Efficient Acetalizaton of Carbonyl Compounds with Diols Catalyzed by Novel Carbon-Based Solid Strong Acid Catalyst[J]. Chinese Sci Bull, 2007,52(21):2892-2895.  

    4. [4]

      Gao S, Liang X, Yang J. An Efficient Heterogeneous Procedure for the Catalytic Acetalization and Ketalization at Room Temperature under Solvent-Free Condition[J]. Chinese Sci Bull, 2008,53(10):1484-1488.  

    5. [5]

      Boonoun P, Laosiripojana N, Shotipruk A. Application of Sulfonated Carbon-Based Catalyst for Reactive Extraction of 1, 3-Propanediol from Model Fermentation Mixture[J]. Ind Eng Chem Res, 2010,49:12352-12357.  

    6. [6]

      Daengprasert W, Boonnoun P, Shotipruk A. Application of Sulfonated Carbon-Based Catalyst for Solvothermal Conversion of Cassava Waste to Hydroxymethylfurfural and Furfural[J]. Ind Eng Chem Res, 2011,50:7903-7910.  

    7. [7]

      Tanemura K, Suzuki T, Nishida Y. Synthesis of the Sulfonated Condensed Polynuclear Aromatic(S-COPNA) Resins as Strong Protonic Acids[J]. Tetrahedron, 2011,67(6):1314-1319.  

    8. [8]

      Tanemura K, Suzuki T, Horaguchi T. Synthesis of Sulfonated Polynaphthalene, Polyanthracene, and Polypyrene as Strong Solid Acids via Oxidative Coupling Polymerization[J]. J Appl Polym Sci, 2013,127(6):4524-4536. doi: 10.1002/app.38045

    9. [9]

      ZHAN Yingying, YANG Wenxia, LIU Yingxin. Progress in Preparation and Application of Carbon-Based Solid Acid Catalysts[J]. Zhejiang Chem Ind, 2016,47(1):21-25.  

    10. [10]

      Wu M, Zheng J, Qiu J. Synthesis and Characterization of Condensed Poly-Nuclear Aromatic Resin using Heavy Distillate from Ethylene Tar[J]. New Carbon Mater, 2012,27(6):469-475.  

    11. [11]

      Ge C, Long D, Ling L. Preparation and Characterization of High Softening Point and Homogeneous Isotropic Pitches Produced from Distilled Ethylene Tar by a Novel Bromination Method[J]. New Carbon Mater, 2018,33(1):71-81.  

    12. [12]

      GUAN Shengnan, LI Huipeng, ZHAO Hua. Preparation of Biodiesel Catalyzed by Potato Powder Carbon-Based Solid Acid[J]. China Oils Fats, 2019,44(6):75-88.  

    13. [13]

      JIANG Wenjing, CHEN Hong, SONG Huaihe. Preparation and Performance of COPNA Resin from Bamboo Tar[J]. Carbon Technol, 2016,4(35):41-44.  

    14. [14]

      Yu J T, Dehkhoda A M, Ellis N. Development of Biochar-Based Catalyst for Transesterification of Canola Oil[J]. Energy Fuels, 2011,25:337-344.  

    15. [15]

      XU Qiong. Study on Preparation and Catalytic Performances of Biomass Char Sulfonic Acids[D]. Hunan Normal University, 2008(in Chinese).

    16. [16]

      YANG Shasha, ZHANG Jianghua, LI Hongyan. Chitosan-derived Solid Acid as a Catalyst for Fructose Dehydration into 5-Hydroxymethylfurural[J]. Fine Chem, 2019,36(8):1591-1597.  

    17. [17]

      NIE Guangxia. Research on the Dehydration of Fructose to 5-Hydroxymethyl Furfural Catalyzed by Graphite Derivates as the Catalysts[D]. Tianjing: Tianjin University of Technology, 2015(in Chinese).

    18. [18]

      Carniti P, Gervasini A, Marzo M. Absence of Expected Side-Reactions in the Dehydration Reaction of Fructose to 5-HMF in Water over Niobic Acid Catalyst[J]. Catal Commun, 2011,12:1122-1126.  

    19. [19]

      Dou Y, Zhou S, Oldani C. 5-Hydroxymethylfurfural Production from Dehydration of Fructose Catalyzed by Aquivion@Silica Solid Acid[J]. Fuel, 2018,214:45-54.  

    20. [20]

      LI Zhenzhen. Catalytic Conversion of Fructose into 5-Hydroxymethylfurfural in Isopropanol[D]. South China University of Technology, 2014(in Chinese).

    21. [21]

      WU Lili. Studies on the Preparation of Hickory Hull Char Sulfonic Acid Catalyst and its Applications[D]. East China Jiaotong University, 2015(in Chinese).

    22. [22]

      Zhang M, Jiang H, Li G. High Activity Ordered Mesoporous Carbon-Based Solid Acid Catalyst for the Esterification of Free Fatty Acids[J]. Micropor Mesopor Mater, 2015,204:210-217.  

  • 加载中
    1. [1]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      . . University Chemistry, 2024, 39(5): 0-0.

    18. [18]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(1)
  • Abstract views(2297)
  • HTML views(546)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return