Citation: GUO Hongxia, CUI Jifang, LIU Li. Research Progress in Photocatalytic Reduction of CO2 Enhanced by Oxygen Vacancy[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 256-263. doi: 10.11944/j.issn.1000-0518.2020.03.190265 shu

Research Progress in Photocatalytic Reduction of CO2 Enhanced by Oxygen Vacancy

  • Corresponding author: GUO Hongxia, guohongxia.ok@163.com
  • Received Date: 10 October 2019
    Revised Date: 19 November 2019
    Accepted Date: 2 February 2020

    Fund Project: Supported by the National Natural Science Young Foundation of China(No.21908052)the National Natural Science Young Foundation of China 21908052

Figures(6)

  • The photocatalytic reduction reactions can directly convert carbon dioxide (CO2) into hydrocarbon solar fuels utilizing the endless solar energy and semiconductor photocatalysts, which can solve the greenhouse effect, global warming, environmental pollution, and energy crisis, therefore it has become the ideal way nowadays. The mechanism of photocatalytic reduction of CO2 enhanced by oxygen vacancy and the photocatalytic systems with C1 and C2 components as reduction products were summarized in this paper. The first step in the CO2 photoreduction (i.e. the formation of CO2·- anionic radical by capturing an electron from the conduction band of a photocatalyst) was considered to be the rate-limiting step. The introduction of oxygen vacancy and induced coordinately unsaturated metal atoms sites could strengthen the electron capture from CO2 to CO2·-, thereby promoting the photocatalytic CO2 reduction. The existential problems in the process of photocatalytic reduction of CO2 enhanced by oxygen vacancy were explained objectively, and the development prospects were put forward.
  • 加载中
    1. [1]

      Ola O, Maroto-Valer M M. Review of Material Design and Reactor Engineering on TiO2 Photocatalysis for CO2 Reduction[J]. J Photochem Photobiol C, 2015,24:16-42. doi: 10.1016/j.jphotochemrev.2015.06.001

    2. [2]

      Guo H X, Kou X C, Zhao Y J. Effect of Synergistic Interaction Between Ce and Mn on the CO2 Capture of Calcium-Based Sorbent:Textural Properties, Electron Donation, and Oxygen Vacancy[J]. Chem Eng J, 2018,334:237-246. doi: 10.1016/j.cej.2017.09.198

    3. [3]

      Guo H X, Kou X C, Zhao Y J. Role of Microstructure, Electron Transfer, and Coordination State in the CO2 Capture of Calcium-Based Sorbent by Doping(Zr-Mn)[J]. Chem Eng J, 2018,336:376-385. doi: 10.1016/j.cej.2017.11.186

    4. [4]

      Guo H X, Yan S L, Zhao Y J. Influence of Water Vapor on Cyclic CO2 Capture Performance in both Carbonation and Decarbonation Stages for Ca-Al Mixed Oxide[J]. Chem Eng J, 2019,359:542-551. doi: 10.1016/j.cej.2018.11.173

    5. [5]

      Guo H X, Feng J Q, Zhao Y J. Effect of Micro-Structure and Oxygen Vacancy on the Stability of (Zr-Ce)-Additive CaO-Based Sorbent in CO2 Adsorption[J]. J CO2 Util, 2017,19:165-176. doi: 10.1016/j.jcou.2017.03.015

    6. [6]

      Guo H X, Wang S P, Li C. Incorporation of Zr into Calcium Oxide for CO2 Capture by a Simple and Facile Sol-Gel Method[J]. Ind Eng Chem Res, 2016,55:7873-7879. doi: 10.1021/acs.iecr.5b04112

    7. [7]

      Wang S P, Fan S S, Zhao Y J. Carbonation Condition and Modeling Studies of Calcium-Based Sorbent in the Fixed-Bed Reactor[J]. Ind Eng Chem Res, 2014,53(25):10457-10464. doi: 10.1021/ie500789g

    8. [8]

      Turner J A. A Realizable Renewable Energy Future[J]. Science, 1999,285(5428):687-689. doi: 10.1126/science.285.5428.687

    9. [9]

      LI Ying. Synthesis of Cu/N-UiO Composite Materials and Their Visible-Light-Driven Photocatalytic Properties[D]. Tianjin: Tianjin University, 2016(in Chinese). 

    10. [10]

      Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors[J]. Angew Chem Int Ed, 2013,52(29):7372-7408. doi: 10.1002/anie.201207199

    11. [11]

      Wang K, Li Q, Liu B S. Sulfur-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Performance[J]. Appl Catal B-Environ, 2015,176/177:44-52. doi: 10.1016/j.apcatb.2015.03.045

    12. [12]

      Tu W, Zhou Y, Zou Z. Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels:State-of-the-Art Accomplishment, Challenges and Prospects[J]. Adv Mater, 2014,26:4607-4626. doi: 10.1002/adma.201400087

    13. [13]

      Liu G, Yang H G, Wang X L. Enhanced Photoactivity of Oxygen-Deficient Anatase TiO2 Sheets with Dominant {001} Facets[J]. J Phys Chem C, 2009,113:21784-21788. doi: 10.1021/jp907749r

    14. [14]

      Chen Y, Cao X, Gao B. A Facile Approach to Synthesize N-Doped and Oxygen-Deficient TiO2 with High Visible-Light Activity for Benzene Decomposition[J]. Mater Lett, 2013,94:154-157. doi: 10.1016/j.matlet.2012.12.010

    15. [15]

      Liu X, Bi Y. In Situ Preparation of Oxygen-deficient TiO2 Microspheres with Modified {001} Facets for Enhanced Photocatalytic Activity[J]. RSC Adv, 2017,7:9902-9907. doi: 10.1039/C6RA28533C

    16. [16]

      Fang W, Xing M, Zhang J. Modifications on Reduced Titanium Dioxide Photocatalysts:A Review[J]. J Photochem Photobiol C, 2017,32:21-39. doi: 10.1016/j.jphotochemrev.2017.05.003

    17. [17]

      Zhang N, Gao C, Xiong Y J. Defect Engineering:A Versatile Tool for Tuning the Activation of Key Molecules in Photocatalytic Reactions[J]. J Energy Chem, 2019,37:43-57. doi: 10.1016/j.jechem.2018.09.010

    18. [18]

      LI Junli. The Preparation of Oxygen Vacancy Doped TiO2 and Research in Photocatalytic Reduction of CO2[D]. Kaifeng: Henan University, 2017(in Chinese). 

    19. [19]

      Karamian E, Sharifnia S. On the General Mechanism of Photocatalytic Reduction of CO2[J]. J CO2 Util, 2016,16:194-203. doi: 10.1016/j.jcou.2016.07.004

    20. [20]

      Lee J, Sorescu D C, Deng X Y. Electron-induced Dissociation of CO2 on TiO2(110)[J]. J Am Chem Soc, 2011,133(26):10066-10069. doi: 10.1021/ja204077e

    21. [21]

      Zhang Q Y, Li Y, Ackerman E A. Visible Light Responsive Iodine-Doped TiO2 for Photocatalytic Reduction of CO2 to Fuels[J]. Appl Catal A, 2003,249:11-18. doi: 10.1016/S0926-860X(03)00205-9

    22. [22]

      Michalkiewicz B, Majewska J, Kądziołka G. Reduction of CO2 by Adsorption and Reaction on Surface of TiO2-Nitrogen Modified Photocatalyst[J]. J CO2 Util, 2014,5:47-52. doi: 10.1016/j.jcou.2013.12.004

    23. [23]

      Indrakanti V P, Kubicki J D, Schobert H H. Photoinduced Activation? of CO2 on Ti-Based Heterogeneous Catalysts:Current State, Chemical Physics-Based Insights and Outlook[J]. Energy Environ Sci, 2009,2:745-758. doi: 10.1039/b822176f

    24. [24]

      Zhao C Y, Liu L J, Zhang Q Y. Photocatalytic Conversion of CO2 and H2O to Fuels by Nanostructured Ce-TiO2/SBA-15 Composites[J]. Catal Sci Technol, 2012,2:2558-2568. doi: 10.1039/c2cy20346d

    25. [25]

      Xi G C, Ouyang S X, Li P. Ultrathin W18O49 Nanowires with Diameters below 1 nm:Synthesis, Near-infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide[J]. Angew Chem Int Ed, 2012,51(10):2395-2399. doi: 10.1002/anie.201107681

    26. [26]

      Xie K, Umezawa N, Zhang N. Self-doped SrTiO3-δ Photocatalyst with Enhanced Activity for Artificial Photosynthesis under Visible Light[J]. Energy Environ Sci, 2011,4:4211-4219. doi: 10.1039/c1ee01594j

    27. [27]

      CHEN Xingyu. Two-Step Synthesis of Laminar Vanadate via a Facile Hydrothermal Method and Enhancing the Photocatalytic Reduction of CO2 into Solar Fuel Through Tuning the Oxide Vacancies by Vacuum Illumination Treatment[D]. Nanjing: Nanjing University, 2018(in Chinese). 

    28. [28]

      Fu J W, Jiang K X, Qiu X Q. Product Selectivity of Photocatalytic CO2 Reduction Reactions[J]. Mater Today, 2020,32:222-243. doi: 10.1016/j.mattod.2019.06.009

    29. [29]

      Liu L J, Jiang Y Q, Zhao H L. Engineering Coexposed (001) and (101) Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light[J]. ACS Catal, 2016,6(2):1097-1108. doi: 10.1021/acscatal.5b02098

    30. [30]

      Yin G H, Huang X Y, Chen T Y. Hydrogenated Blue Titania for Efficient Solar to Chemical Conversions:Preparation, Characterization, and Reaction Mechanism of CO2 Reduction[J]. ACS Catal, 2018,8(2):1009-1017. doi: 10.1021/acscatal.7b03473

    31. [31]

      Zhang W, He H, Tian Y. Defect-Engineering of Mesoporous TiO2 Microspheres with Phase Junctions for Efficient Visible-light Driven Fuel Production[J]. Nano Energy, 2019,66:1-8.

    32. [32]

      Liu J Y, Gong X Q, Alexandrova A N. Mechanism of CO2 Photocatalytic Reduction to Methane and Methanol on Defected Anatase TiO2(101):A Density Functional Theory Study[J]. J Phys Chem C, 2019,123:3505-3511. doi: 10.1021/acs.jpcc.8b09539

    33. [33]

      Rodriguez M M, Peng X, Liu L. A Density Functional Theory and Experimental Study of CO2 Interaction with Brookite TiO2[J]. J Phys Chem C, 2012,116:19755-19764. doi: 10.1021/jp302342t

    34. [34]

      Feng H F, Xu Z F, Ren L. Activating Titania for Effcient Electrocatalysis by Vacancy Engineering[J]. ACS Catal, 2018,8:4288-4293. doi: 10.1021/acscatal.8b00719

    35. [35]

      Yu H J, Li J Y, Zhang Y H. Three-in-One Oxygen Vacancy:Whole Visible-spectrum Absorption, Efficient Charge Separation and Surface Site Activation for Robust CO2 Photoreduction[J]. Angew Chem Int Ed, 2018,58(12):3880-3884.  

    36. [36]

      Zhao Y, Chen G, Bian T. Defect-Rich Ultrathin ZnAl-layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water[J]. Adv Mater, 2015,27:7824-7831. doi: 10.1002/adma.201503730

    37. [37]

      Wang Z L, Mao X, Chen P. Understanding the Roles of Oxygen Vacancy in Hematite Based Photoelectrochemical Process[J]. Angew Chem Int Ed, 2018,58(4):1030-1034.  

    38. [38]

      Zhuang J D, Weng S X, Dai W X. Effect of Interface Defect on Charge Transfer and Photoinduced Properties of TiO2 Bilayer Films[J]. J Phys Chem C, 2012,116:25354-25361. doi: 10.1021/jp307871y

    39. [39]

      Li J, Zhang M, Guan Z. Synergistic Effect of Surface and Bulk Single-Electron-Trapped Oxygen Vacancy of TiO2 in the Photocatalytic Reduction of CO2[J]. Appl Catal B-Environ, 2017,206:300-307. doi: 10.1016/j.apcatb.2017.01.025

    40. [40]

      Khalilzadeh A, Shariati A. Photoreduction of CO2 over Heterogeneous Modified TiO2 Nanoparticles under Visible Light Irradiation:Synthesis, Process and Kinetic Study[J]. Sol Energy, 2018,164:251-261. doi: 10.1016/j.solener.2018.02.063

    41. [41]

      Li L, Li P, Wang Y J. Modulation of Oxygen Vacancy in Hydrangea-Like Ceria via Zr Doping for CO2 Photoreduction[J]. Appl Surf Sci, 2018,452:498-506. doi: 10.1016/j.apsusc.2018.04.256

    42. [42]

      Han B, Song J N, Liang S J. Hierarchical NiCo2O4 Hollow Nanocages for Photoreduction of Diluted CO2:Adsorption and Active Sites Engineering[J]. Appl Catal B-Environ, 2020,260:1-7.

    43. [43]

      Tu W, Zhou Y, Liu Q. An in Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2-Graphene 2D Sandwich-Like Hybrid Nanosheet:Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2 into Methane and Ethane[J]. Adv Funct Mater, 2013,23:1743-1749. doi: 10.1002/adfm.201202349

    44. [44]

      Sun S, Watanabe M, Wu J. Ultrathin WO3·0.33H2O Nanotubes for CO2 Photoreduction to Acetate with High Selectivity[J]. J Am Chem Soc, 2018,140(20):6474-6482. doi: 10.1021/jacs.8b03316

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    6. [6]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(42)
  • Abstract views(2722)
  • HTML views(613)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return