Citation: SUN Li'na, LI Yan, GUO Hantao, HUANG Tingting, YAO Bixia, WENG Wen. Preparation of Nitrogen and Iron Co-doped Carbon Nanoparticles and Their Applications in Detection of Hydrogen Peroxide and Glucose[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 350-358. doi: 10.11944/j.issn.1000-0518.2020.03.190256 shu

Preparation of Nitrogen and Iron Co-doped Carbon Nanoparticles and Their Applications in Detection of Hydrogen Peroxide and Glucose

  • Corresponding author: SUN Li'na, 41573105@qq.com
  • Received Date: 29 September 2019
    Revised Date: 19 November 2019
    Accepted Date: 20 December 2019

    Fund Project: the Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province JAT171093the Natural Science Foundation of Fujian Province of China 2016Y0065the Major Science and Technology Projects of Zhangzhou City zz2018ZD20Supported by the Natural Science Foundation of Fujian Province of China(No.2016Y0065), the Major Science and Technology Projects of Zhangzhou City(No.zz2018ZD20), and the Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province(No.JAT171093)

Figures(7)

  • Nitrogen and iron co-doped carbon nanoparticles (N/Fe-CNPs) were synthesized by one-pot solvothermal method using L-tartaric acid and citric acid monohydrate as mixed carbon sources with the addition of ferric chloride hexahydrate, and ethylenediamine as the nitrogen source and polymerization reagent. The as-prepared N/Fe-CNPs could catalyze 3, 3', 5, 5'-tetramethylbenzidine to produce the soluble blue product. Combined with glucose oxidase (GOx), a sensitive method for the detection of hydrogen peroxide and glucose was established. The concentration of hydrogen peroxide and glucose has a good linear relationship with the absorbance of the reaction system. The limit of detection was calculated to be 42.5 and 76.1 nmol/L for hydrogen peroxide and glucose, respectively.
  • 加载中
    1. [1]

      Meng W, Wen Y, Dai L. A Novel Electrochemical Sensor for Glucose Detection Based on Ag@ZIF-67 Nanocomposite[J]. Sens Actuators B, 2018,260:852-860. doi: 10.1016/j.snb.2018.01.109

    2. [2]

      Sun Y, Luo M, Qin Y. Atomic-thick PtNi Nanowires Assembled on Graphene for High-sensitivity Extracellular Hydrogen Peroxide Sensors[J]. ACS Appl Mater Interfaces, 2017,9(40):34715-34721. doi: 10.1021/acsami.7b11758

    3. [3]

      Mu J, Zhang L, Zhao M. Catalase Mimic Property of Co3O4 Nanomaterials with Different Morphology and Its Application as a Calcium Sensor[J]. ACS Appl Mater Interfaces, 2014,6(10):7090-7098. doi: 10.1021/am406033q

    4. [4]

      Dou B, Yang J, Yuan R. Trimetallic Hybrid Nanoflower-decorated MoS2 Nanosheet Sensor for Direct in Situ Monitoring of H2O2 Secreted from Live Cancer Cells[J]. Anal Chem, 2018,90(9):5945-5950. doi: 10.1021/acs.analchem.8b00894

    5. [5]

      Cheng H, Zhang L, He J. Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains[J]. Anal Chem, 2016,88(10):5489-5497. doi: 10.1021/acs.analchem.6b00975

    6. [6]

      Gao L, Zhuang J, Nie L. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles[J]. Nat Nanotechnol, 2007,2(9)577. doi: 10.1038/nnano.2007.260

    7. [7]

      Li Y Z, Li T T, Chen W. Co4N Nanowires:Noble-metal-free Peroxidase Mimetic with Excellent Salt- and Temperature-resistant Abilities[J]. ACS Appl Mater Interfaces, 2017,9(35):29881-29888. doi: 10.1021/acsami.7b09861

    8. [8]

      Lu N, Zhang M, Ding L. Yolk-shell Nanostructured Fe3O4@C Magnetic Nanoparticles with Enhanced Peroxidase-like Activity for Label-free Colorimetric Detection of H2O2 and Glucose[J]. Nanoscale, 2017,9(13):4508-4515. doi: 10.1039/C7NR00819H

    9. [9]

      Chen T M, Wu X J, Wang J X. WSe2 Few Layers with Enzyme Mimic Activity for High-sensitive and High-selective Visual Detection of Glucose[J]. Nanoscale, 2017,9(32):11806-11813. doi: 10.1039/C7NR03179C

    10. [10]

      SHI Xin, LIU Chuanzhi, GONG Ping. Hydrogen Peroxide and Glucose Sensitive Colorimetric Method Based on Deuterohemin-Ala His Thr Val Glu Lys[J]. Chinese J Appl Chem, 2019,36(7):847-854.  

    11. [11]

      Rahimi-Nasrabadi M, Mizani F, Hosseini M. Detection of Hydrogen Peroxide and Glucose by Using Tb2(MoO4)3 Nanoplates as Peroxidase Mimics[J]. Spectrochim Acta, Part A, 2017,186:82-88. doi: 10.1016/j.saa.2017.06.006

    12. [12]

      Han L, Liu P, Zhang H. Phage Capsid Protein-directed MnO2 Nanosheets with Peroxidase-like Activity for Spectrometric Biosensing and Evaluation of Antioxidant Behavior[J]. Chem Commun, 2017,53(37):5216-5219. doi: 10.1039/C7CC02049J

    13. [13]

      Baker S N, Baker G A. Luminescent Carbon Nanodots:Emergent Nanolights[J]. Angew Chem Int Ed, 2010,49(38):6726-6744. doi: 10.1002/anie.200906623

    14. [14]

      Hong G, Diao S, Antaris A L. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy[J]. Chem Rev, 2015,115(19):10816-10906. doi: 10.1021/acs.chemrev.5b00008

    15. [15]

      LIU Xueping, YANG Juan, BAI Yan. Determination of Ferric Ions Based on Fluorescence Quenching of Carbon Dots[J]. Chinese J Anal Chem, 2016,44(5):804-808.  

    16. [16]

      Zhang Y, He J. Facile Synthesis of S, N Co-doped Carbon Dots and Investigation of Their Photoluminescence Properties[J]. PCCP, 2015,17(31):20154-20159. doi: 10.1039/C5CP03498A

    17. [17]

      Yuan Y H, Li R S, Wang Q. Germanium-doped Carbon Dots as a New Type of Fluorescent Probe for Visualizing the Dynamic Invasions of Mercury(Ⅱ) Ions into Cancer Cells[J]. Nanoscale, 2015,7(40):16841-16847. doi: 10.1039/C5NR05326A

    18. [18]

      Zhao L, Wang L, Yu P. A Chromium Nitride/Carbon Nitride containing Graphitic Carbon Nanocapsule Hybrid as a Pt-free Electrocatalyst for Oxygen Reduction[J]. Chem Commun, 2015,51(62):12399-12402. doi: 10.1039/C5CC04482K

    19. [19]

      Li W, Zhang Z, Kong B. Simple and Green Synthesis of Nitrogen-doped Photoluminescent Carbonaceous Nanospheres for Bioimaging[J]. Angew Chem Int Edit, 2013,52(31):8151-8155. doi: 10.1002/anie.201303927

    20. [20]

      Wei H, Wang E. Nanomaterials with Enzyme-like Characteristics(Nanozymes):Next-generation Artificial Enzymes[J]. Chem Soc Rev, 2013,42(14):6060-6093. doi: 10.1039/c3cs35486e

    21. [21]

      Tang Y, Su Y, Yang N. Carbon Nitride Quantum Dots:A Novel Chemiluminescence System for Selective Detection of Free Chlorine in Water[J]. Anal Chem, 2014,86(9):4528-4535. doi: 10.1021/ac5005162

    22. [22]

      Wei J, Liang Y, Zhang X. Controllable Synthesis of Mesoporous Carbon Nanospheres and Fe-N/carbon Nanospheres as Efficient Oxygen Reduction Electrocatalysts[J]. Nanoscale, 2015,7(14):6247-6254. doi: 10.1039/C5NR00331H

    23. [23]

      Zhou J, Yang Y, Zhang C. A Low-temperature Solid-Phase Method to Synthesize Highly Fluorescent Carbon Nitride Dots with Tunable Emission[J]. Chem Commun, 2013,49(77):8605-8607. doi: 10.1039/c3cc42266f

    24. [24]

      Lin L, Zhu Q, Xu A W. Noble-metal-free Fe-N/C Catalyst for Highly Efficient Oxygen Reduction Reaction under both Alkaline and Acidic Conditions[J]. J Am Chem Soc, 2014,136(31):11027-11033. doi: 10.1021/ja504696r

    25. [25]

      Chen X, Zhang J, Fu X. Fe-g-C3N4-catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light[J]. J Am Chem Soc, 2009,131(33):11658-11659. doi: 10.1021/ja903923s

    26. [26]

      Li S, Li Y, Cao J. Sulfur-doped Graphene Quantum Dots as a Novel Fluorescent Probe for Highly Selective and Sensitive Detection of Fe3+[J]. Anal Chem, 2014,86(20):10201-10207. doi: 10.1021/ac503183y

    27. [27]

      Wang D, Xu H, Zheng B. N-Doped Carbon Dots with High Sensitivity and Selectivity for Hypochlorous Acid Detection and Its Application in Water[J]. Anal Methods, 2015,7(12):5311-5317. doi: 10.1039/C5AY00944H

    28. [28]

      Hsueh C L, Huang Y H, Wang C C. Degradation of Azo Dyes Using Low Iron Concentration of Fenton and Fenton-like System[J]. Chemosphere, 2005,58(10):1409-1414. doi: 10.1016/j.chemosphere.2004.09.091

    29. [29]

      Tian J, Liu Q, Asiri A M. Ultrathin Graphitic Carbon Nitride Nanosheets:A Novel Peroxidase Mimetic, Fe Doping-mediated Catalytic Performance Enhancement and Application to Rapid, Highly Sensitive Optical Detection of Glucose[J]. Nanoscale, 2013,5(23):11604-11609. doi: 10.1039/c3nr03693f

    30. [30]

      Lin L, Song X, Chen Y. Intrinsic Peroxidase-like Catalytic Activity of Nitrogen-doped Graphene Quantum Dots and Their Application in the Colorimetric Detection of H2O2 and Glucose[J]. Anal Chim Acta, 2015,869:89-95. doi: 10.1016/j.aca.2015.02.024

    31. [31]

      Zheng H, Su R, Gao Z. Magnetic-fluorescent Nanocomposites as Reusable Fluorescence Probes for Sensitive Detection of Hydrogen Peroxide and Glucose[J]. Anal Methods, 2014,6(16):6352-6357. doi: 10.1039/C4AY00886C

    32. [32]

      Ling Y, Zhang N, Qu F. Fluorescent Detection of Hydrogen Peroxide and Glucose with Polyethyleneimine-templated Cu Nanoclusters[J]. Spectrochim Acta Part A, 2014,118:315-320. doi: 10.1016/j.saa.2013.08.097

    33. [33]

      Chang H C, Ho J A. Gold Nanocluster-assisted Fluorescent Detection for Hydrogen Peroxide and Cholesterol Based on the Inner Filter Effect of Gold Nanoparticles[J]. Anal Chem, 2015,87(20):10362-10367. doi: 10.1021/acs.analchem.5b02452

    34. [34]

      Zhang R, He S, Zhang C. Three-dimensional Fe- and N-Incorporated Carbon Structures as Peroxidase Mimics for Fluorescence Detection of Hydrogen Peroxide and Glucose[J]. J Mater Chem B, 2015,3(20):4146-4154. doi: 10.1039/C5TB00413F

    35. [35]

      Hu F, Huang Y, Zhang G. A Highly Selective Fluorescence Turn-on Detection of Hydrogen Peroxide and D-Glucose Based on the Aggregation/deaggregation of a Modified Tetraphenylethylene[J]. Tetrahedron Lett, 2014,55(8):1471-1474. doi: 10.1016/j.tetlet.2014.01.056

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    3. [3]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    4. [4]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    5. [5]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    6. [6]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    7. [7]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    10. [10]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    11. [11]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    12. [12]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    14. [14]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    15. [15]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(5)
  • Abstract views(2404)
  • HTML views(397)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return