Citation: LI Maosheng, CHEN Jinlong, TAO Youhua. Regio- and Stereoselective Ring-Opening Metathesis Polymerization of Amino Acid Functionalized Cyclooctenes[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 280-292. doi: 10.11944/j.issn.1000-0518.2020.03.190253 shu

Regio- and Stereoselective Ring-Opening Metathesis Polymerization of Amino Acid Functionalized Cyclooctenes

  • Corresponding author: TAO Youhua, youhua.tao@ciac.ac.cn
  • Received Date: 25 September 2019
    Revised Date: 11 October 2019
    Accepted Date: 7 November 2019

    Fund Project: the National Natural Science Foundation of China 21805272the Jilin Science and Technology Bureau 20180201070GXSupported by the National Natural Science Foundation of China(No.21805272), and the Jilin Science and Technology Bureau(No.20180201070GX)

Figures(9)

  • Synthesis of side-chain amino acid-bearing polymers with controllable primary structures is still a long-term challenge in polymer chemistry compared to biomacromolecules (such as proteins and DNA) with completely precise microstructures. Here, we describe the synthesis of high trans-stereoregular (>99%) and high head-to-tail regioregularity (>99%) leucine-based homopolymers and block copolymers with relatively low polydispersities ranging from 1.3 to 1.6, using two designed monomers, namely (cyclooct-2-ene-1-carbonyl)-L-leucine methyl ester (1) and (cyclooct-2-ene-1-carbonyl)-L-leucine (2), via Grubbs 2nd catalyst at mild conditions. Importantly, the block copolymer of monomers1 and2 with molar ratio n(1):n(2)=50:50 is soluble in acetone to form reverse micelles with radius around 30 nm, which is composed of a hydrophilic core of poly(2) and a hydrophobic shell of poly(1). However, the random copolymers with the same proportion was partially insoluble in the solvent. These amino acid-bearing polymers with well-defined regio-/stereoregular structures provide the basis for relevant applications in biomimetic materials.
  • 加载中
    1. [1]

      Laursen J S, Harris P, Fristrup P. Triangular Prism-Shaped β-Peptoid Helices as Unique Biomimetic Scaffolds[J]. Nat Commun, 2015,6:7013-7022. doi: 10.1038/ncomms8013

    2. [2]

      Lai H, Chen X, Lu Q. A New Strategy to Synthesize Bottlebrushes with a Helical Polyglutamate Backbone via N-Carboxyanhydride Polymerization and RAFT[J]. Chem Commun, 2014,50:14183-14186. doi: 10.1039/C4CC06575A

    3. [3]

      TAO Youhua. New Polymerization Methodology of Amino Acid Based on Lactam Polymerization[J]. Acta Polym Sin, 2016(9):1151-1159.  

    4. [4]

      Li M, Tao Y, Tang J. Synergetic Organocatalysis for Eliminating Epimerization in Ring-Opening Polymerizations Enables Synthesis of Stereoregular Isotactic Polyester[J]. J Am Chem Soc, 2019,141(1):281-289. doi: 10.1021/jacs.8b09739

    5. [5]

      Wang S X, Tao Y, Wang J. A Versatile Strategy for the Synthesis of Sequence-Defined Peptoids with Side-Chain and Backbone Diversity via Amino Acid Building Blocks[J]. Chem Sci, 2019,10:1531-1538. doi: 10.1039/C8SC03415J

    6. [6]

      Wang S, He W, Xiao C. Synthesis of Y-Shaped OEGylated Poly(amino acid)s:The Impact of OEG Architecture[J]. Biomacromolecules, 2019,20(4):1655-1666. doi: 10.1021/acs.biomac.9b00026

    7. [7]

      Tao Y, Wang S, Zhang X. Synthesis and Properties of Alternating Polypeptoids and Polyampholytes as Protein-Resistant Polymers[J]. Biomacromolecules, 2018,19(3):936-942. doi: 10.1021/acs.biomac.7b01719

    8. [8]

      He W, Tao Y, Wang X. Functional Polyamides:A Sustainable Access via Lysine Cyclization and Organocatalytic Ring-Opening Polymerization[J]. Macromolecules, 2018,51(20):8248-8257. doi: 10.1021/acs.macromol.8b01790

    9. [9]

      Chen J, Li M, He W. Facile Organocatalyzed Synthesis of Poly(ε-lysine) under Mild Conditions[J]. Macromolecules, 2017,50(23):9128-9134. doi: 10.1021/acs.macromol.7b02331

    10. [10]

      Zhang X, Wang S, Liu J. Ugi Reaction of Natural Amino Acids:A General Route Toward Facile Synthesis of Polypeptoids for Bioapplications[J]. ACS Macro Lett, 2016,5(9):1049-1054. doi: 10.1021/acsmacrolett.6b00530

    11. [11]

      Tao Y, Wang Z, Tao Y H. Polypeptoids Synthesis Based on Ugi Reaction:Advances and Perspectives[J]. Biopolymers, 2019,110(3).  

    12. [12]

      Zhang H, Chen J, Zhang X. Multidentate Comb-Shape Polypeptides Bearing Trithiocarbonate Functionality:Synthesis and Application for Water-Soluble Quantum Dots[J]. Biomacromolecules, 2017,18(3):924-910. doi: 10.1021/acs.biomac.6b01760

    13. [13]

      Tao Y, Chen X, Jia F. New Chemosynthetic Route to Linear ε-Poly-lysine[J]. Chem Sci, 2015,6:6385-6391. doi: 10.1039/C5SC02479J

    14. [14]

      Bellomo E G, Wyrsta M D, Pakstis L. Stimuli-Responsive Polypeptide Vesicles by Conformation-Specific Assembly[J]. Nat Mater, 2004,3:244-248. doi: 10.1038/nmat1093

    15. [15]

      Deming T J. Synthetic Polypeptides for Biomedical Applications[J]. Prog Polym Sci, 2007,32:858-875. doi: 10.1016/j.progpolymsci.2007.05.010

    16. [16]

      Kiessling L L, Fishman J M. Biologically Active Polymers[B]. Handbook of Metathesis; Wiley-VCH Verlag GmbH & Co.KGaA: 2015: 169-206.

    17. [17]

      Chen X, Lai H, Xiao C. New Bio-renewable Polyester with Rich Side Amino Groups from L-Lysine via Controlled Ring-Opening Polymerization[J]. Polym Chem, 2014,5:6495-6502. doi: 10.1039/C4PY00930D

    18. [18]

      Mori H, Endo T. Amino-Acid-Based Block Copolymers by RAFT Polymerization[J]. Macromol Rapid Commun, 2012,33:1090-1107. doi: 10.1002/marc.201100887

    19. [19]

      Ayres L, Hans P, Adams J. Peptide Polymer Vesicles Prepared by Atom Transfer Radical Polymerization[J]. J Polym Sci Polym Chem, 2005,43:6355-6366. doi: 10.1002/pola.21107

    20. [20]

      O'Reilly R K. Using Controlled Radical Polymerisation Techniques for the Synthesis of Functional Polymers Containing Amino Acid Moieties[J]. Polym Int, 2010,59:568-573.  

    21. [21]

      Lee Y, Sampson N S. Polymeric ADAM Protein Mimics Interrogate Mammalian Sperm Egg Binding[J]. ChemBioChem, 2009,10:929-937. doi: 10.1002/cbic.200800791

    22. [22]

      Bauri K, De P, Shah P N. Polyisobutylene-Based Helical Block Copolymers with pH-Responsive Cationic Side-Chain Amino Acid Moieties by Tandem Living Polymerizations[J]. Macromolecules, 2013,46(15):5861-5870. doi: 10.1021/ma401395f

    23. [23]

      Mori H, Takahashi E, Ishizuki A. Tryptophan-Containing Block Copolymers Prepared by RAFT Polymerization:Synthesis, Self-Assembly, and Chiroptical and Sensing Properties[J]. Macromolecules, 2013,46(16):6451-6465. doi: 10.1021/ma400596r

    24. [24]

      Bielawski C W, Hillmyer M A. Telechelic Polymers from Olefin Metathesis Methodologies[B]. Handbook of Metathesis; Grubbs, R. H., ED.; Wiley-VCH: Weinheim, Germany, 2003: 255-282.

    25. [25]

      Penczek S, Cypryk M, Duda A. Living Ring-opening Polymerizations of Heterocyclic Monomers[J]. Prog Polym Sci, 2007,32:247-282. doi: 10.1016/j.progpolymsci.2007.01.002

    26. [26]

      Wu J, Yu T L, Chen C T. Recent Developments in Main Group Metal Complexes Catalyzed/Initiated Polymerization of Lactides and Related Cyclic Esters[J]. Coord Chem Rev, 2006,250:602-626. doi: 10.1016/j.ccr.2005.07.010

    27. [27]

      Maynard H D, Okada S Y, Grubbs R H. Inhibition of Cell Adhesion to Fibronectin by Oligopeptide-Substituted Polynorbornenes[J]. J Am Chem Soc, 2001,123(7):1275-1279. doi: 10.1021/ja003305m

    28. [28]

      Biagini SC G, Gareth Davies R, Gibson V C. Ruthenium Initiated Ring Opening Metathesis Polymerisation of Amino-acid and -Ester Functionalised Norbornenes and a Highly Selective Chain-End Functionalisation Reaction Using Molecular Oxygen[J]. Polymer, 2001,42:6669-6671. doi: 10.1016/S0032-3861(01)00146-X

    29. [29]

      Sutthasupa S, Shiotsuki M, Masuda T. Alternating Ring-Opening Metathesis Copolymerization of Amino Acid Derived Norbornene Monomers Carrying Nonprotected Carboxy and Amino Groups Based on Acid? Base Interaction[J]. J Am Chem Soc, 2009,131(30):10546-10551. doi: 10.1021/ja903248c

    30. [30]

      Osawa K, Kobayashi S, Tanaka M. Synthesis of Sequence-Specific Polymers with Amide Side Chains via Regio-/Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted cis-Cyclooctene[J]. Macromolecules, 2016,49(21):8154-8161. doi: 10.1021/acs.macromol.6b01829

    31. [31]

      Kobayashi S, Fukuda K, Kataoka M. Regioselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes with Ether Side Chains[J]. Macromolecules, 2016,49(7):2493-2501. doi: 10.1021/acs.macromol.6b00273

    32. [32]

      Zhang J, Matta M E, Martinez H. Precision Vinyl Acetate/Ethylene(VAE) Copolymers by ROMP of Acetoxy-Substituted Cyclic Alkenes[J]. Macromolecules, 2013,46(7):2535-2543. doi: 10.1021/ma400092z

    33. [33]

      Zhang J, Matta M E, Hillmyer M A. Synthesis of Sequence-Specific Vinyl Copolymers by Regioselective ROMP of Multiply Substituted Cyclooctenes[J]. ACS Macro Lett, 2012,1(12):1383-1387. doi: 10.1021/mz300535r

    34. [34]

      Martinez H, Mir P, Charbonneau P. Selectivity in Ring-Opening Metathesis Polymerization of Z-Cyclooctenes Catalyzed by a Second-generation Grubbs Catalyst[J]. ACS Catal, 2012,2(12):2547-2556. doi: 10.1021/cs300549u

    35. [35]

      Kobayashi S, Pitet L M, Hillmyer M A. Regio- and Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes[J]. J Am Chem Soc, 2011,133(15):5794-5797. doi: 10.1021/ja201644v

    36. [36]

      Martinez H, Ren N, Matta M E. Ring-Opening Metathesis Polymerization of 8-Membered Cyclic Olefins[J]. Polym Chem, 2014,5:3507-3532. doi: 10.1039/c3py01787g

    37. [37]

      Li M, Cui F, Li Y. Crystalline Regio-/Stereoregular Glycine-Bearing Polymers from ROMP:Effect of Microstructures on Materials Performances[J]. Macromolecules, 2016,49(24):9415-9424. doi: 10.1021/acs.macromol.6b02244

    38. [38]

      Bates C M, Bates F S. 50th Anniversary Perspective:Block Polymers-Pure Potential[J]. Macromolecules, 2017,50(1):3-22.  

    39. [39]

      Ahmed S R, Bullock S E, Cresce A V. Polydispersity Control in Ring Opening Metathesis Polymerization of Amphiphilic Norbornene Diblock Copolymers[J]. Polymer, 2003,44:4943-4948. doi: 10.1016/S0032-3861(03)00487-7

    40. [40]

      Gill G B, Idris M S, Kirollos K S. Ene Reactions of Indane-1, 2, 3-trione(A Super-Enophile) and Related Vicinal Tricarbonyl Systems[J]. J Chem Soc, Perkin Transactions 1, 1992,18:2355-2365.  

    41. [41]

      Gill G B, Idris M S, Kirollos K S. Oxidative Cleavage of Indane-1, 2, 3-Trione-Ene Adducts; A Convenient Synthesis of Allyl and Allenyl Carboxylic Acids[J]. J Chem Soc, Perkin Trans 1, 1992,18:2367-2369.  

    42. [42]

      Te Velde G, Bickelhaupt F M, Baerends E J. Chemistry with ADF[J]. J Comput Chem, 2001,22:931-967. doi: 10.1002/jcc.1056

    43. [43]

      Baerends E J, Ellis D E, Ros P. Self-consistent Molecular Hartree-Fock-Slater Calculations Ⅰ.The Computational Procedure[J]. Chem Phys, 1973,2:41-51. doi: 10.1016/0301-0104(73)80059-X

    44. [44]

      Baerends E J and Ros P. Self-Consistent Molecular Hartree-Fock-Slater Calculations Ⅱ.The Effect of Exchange Scaling in Some Small Molecules[J]. Chem Phys, 1973,2:52-59. doi: 10.1016/0301-0104(73)80060-6

    45. [45]

      Becke A D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior[J]. Phys Rev A, 1988,38:3098-3100. doi: 10.1103/PhysRevA.38.3098

    46. [46]

      Perdew J P. Accurate and Simple Density Functional for the Electronic Exchange Energy:Generalized Gradient Approximation[J]. Phys Rev B, 1986,33:8822-8824. doi: 10.1103/PhysRevB.33.8822

    47. [47]

      Perdew J P. Erratum:Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas[J]. Phys Rev B, 1986,34:7406-7406.  

    48. [48]

      Yamamoto Y, Yatagai H, Maruyama K. Reaction of Allylic Boron and Aluminum "ate" Complexes with Organic Halides and Carbonyl Compounds. Trialkylboranes as Regio-, Stereo-, and Chemoselective Control Elements[J]. J Am Chem Soc, 1981,103(8):1969-1975. doi: 10.1021/ja00398a016

    49. [49]

      Rabotyagova O S, Cebe P, Kaplan D L. Protein-Based Block Copolymers[J]. Biomacromolecules, 2011,12(2):269-289. doi: 10.1021/bm100928x

    50. [50]

      Broyer R M, Grover G N, Maynard H D. Emerging Synthetic Approaches for Protein-Polymer Conjugations[J]. Chem Commun, 2011,47:2212-2226. doi: 10.1039/c0cc04062b

    51. [51]

      Sutthasupa S, Shiotsuki M, Matsuoka H. ing-Opening Metathesis Block Copolymerization of Amino Acid Functionalized Norbornene Monomers. Effects of Solvent and pH on Micelle Formation[J]. Macromolecules, 2010,43(4):1815-1822. doi: 10.1021/ma902405g

    52. [52]

      Förster S, Antonietti M. Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids[J]. Adv Mater, 1998,10:195-217. doi: 10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V

    53. [53]

      Rodríguez-Hernández J, Chécot F, Gnanou Y. Toward Smart' Nano-objects by Self-assembly of Block Copolymers in Solution[J]. Prog Polym Sci, 2005,30:691-724. doi: 10.1016/j.progpolymsci.2005.04.002

  • 加载中
    1. [1]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    2. [2]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    3. [3]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    4. [4]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    5. [5]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

    6. [6]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    7. [7]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    8. [8]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    9. [9]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    10. [10]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    11. [11]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    12. [12]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    13. [13]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    14. [14]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    15. [15]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    16. [16]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    17. [17]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    18. [18]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    19. [19]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    20. [20]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

Metrics
  • PDF Downloads(7)
  • Abstract views(1660)
  • HTML views(213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return