Citation: ZHANG Yuan, XU Jiaxin, DENG Hongquan, JIANG Qiying. Preparation and Performance of Gd3+-Doped ZnO[J]. Chinese Journal of Applied Chemistry, ;2020, 37(3): 340-349. doi: 10.11944/j.issn.1000-0518.2020.03.190175 shu

Preparation and Performance of Gd3+-Doped ZnO

  • Corresponding author: JIANG Qiying, jqy_163@163.com
  • Received Date: 21 June 2019
    Revised Date: 29 August 2019
    Accepted Date: 20 September 2019

    Fund Project: Sichuan′s Training Program of Innovation and Entrepreneurship for Undergraduate S201910619032Supported by Sichuan′s Training Program of Innovation and Entrepreneurship for Undergraduate(No.S201910619032)

Figures(11)

  • In order to improve photocatalytic activity and acid-resistant alkalinity of ZnO and expand the absorption range of light, nanosized ZnO particles doped with Gd3+ (Zn1-xGdxO2(x=0~0.1)) were synthesized by thermal decomposition of the coordinated precursor, in which ethylenediamine tetraacetic acid(H4EDTA) is the ligand. Effects of the doping amount of Gd3+ on the structure, phase, morphology, optical properties and photo-electrical behaviors of ZnO were studied by X-ray diffraction (XRD) spectrometry, ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS), Fourier transform infrared (FT-IR) spectroscopy, flurescence spectroscopy (FL), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), dynamic photoelectrical current curve (i-t), etc. XRD results show that when the amount of Gd3+ is below 3%, there is a single phase of ZnO with hexagonal wurtzite structure. With the increase of Gd3+ doping(>3%), a little bit of second phase of Gd2O3 shows up and the grain size of ZnO is reduced. From i-t results, Gd3+ doping amount of 1% exhibits the biggest current density of 10 mA/m2. With the increase of Gd3+ doping, the band structure of ZnO is changed, the value of conduction band (CB), valence band (VB) and band-gap value (Eg) of ZnO are all reduced. At the same time, photo-degradation results of methyl orange (MO) reveal that Gd3+ doping can enhance the photocatalytic activity of ZnO, and the suitable amount is 1%. The catalytic selectivity and acid-resistant alkalinity of ZnO and Gd-doped ZnO were also studied simply.
  • 加载中
    1. [1]

      Chang C J, Huang K L, Chen J K. Improved Photocatalytjc Hydrogen Production of ZnO/ZnS Based Photocatalysts by Ce Doping[J]. J Taiwan Inst Chem Eng, 2015,25:82-89.  

    2. [2]

      Samadi M, Zirak M, Naseri A. Recent Progress on Doped ZnO Nanostructures for Visible-Light Photocatalysis[J]. Thin Solid Film, 2016,605:2-19. doi: 10.1016/j.tsf.2015.12.064

    3. [3]

      Yan L, Liu J C, Lu T. Morphology, Photoluminscence and Gas Sensing of Ce-doped ZnO Microspheres[J]. Trans Nonferrous Met Soc China, 2015,25:3657-3663. doi: 10.1016/S1003-6326(15)64006-7

    4. [4]

      SHI Shimeng, CUI Entian, DONG Pengyu. Preparation and Photocatalytic Performance of ZnO/C Composite[J]. New Chem Mater, 2017(1):127-129.  

    5. [5]

      LI Ru, YU Liangmin, YAN Xuefeng. Morphology-controlled Preparation and Photocatalytic Properties of Cu2O/ZnO Microstructures[J]. Chem Res Chinese Univ, 2017,38:267-274. doi: 10.7503/cjcu20160502

    6. [6]

      ZHAO Yanru, MA Jianzhong, LIU Junli. Research Progress on Visible-light Responding ZnO-Based Nanocomposite Photoocatalyst[J]. J Mater Eng, 2017,45:129-137.  

    7. [7]

      CAI Weimin, LONG Mingce. Environmental Photocatalytic Material and Photocatalytic Purification Technology[M]. Shanghai:Shanghai Jiaotong University Press, 2011(in Chinese).

    8. [8]

      YIN Qiaoqiao, QIAO Ru, TONG Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials[J]. Prog Chem, 2014,26(10):1619-1632.  

    9. [9]

      LIU Shouxin, LIU Hong. Photocatalytic and Photocatalytic Foundations and Applications[M]. Beijing:Chemical Industry Press, 2006:57-59(in Chinese).

    10. [10]

      Marí B, Singh K C, Verma N. Optical Properties of Yb-Doped ZnO/MgO Nanocomposites[J]. Ceram Int, 2016,42(11):13018-13023. doi: 10.1016/j.ceramint.2016.05.079

    11. [11]

      Baturay S, Ocak Y S, Kaya D. The Effect of Gd Doping on the Electrical and Photoelectrical Properties of Gd:ZnO/p-Si Heterojunctions[J]. J Alloys Compd, 2015,645:29-33. doi: 10.1016/j.jallcom.2015.04.212

    12. [12]

      Xu Y, Schoonen M A A. The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals[J]. Am Mineral, 2000,85:543-556. doi: 10.2138/am-2000-0416

    13. [13]

      Jr A Franco, Pessoni H V. Optical Band-Gap and Dielectric Behavior in Ho-Doped ZnO Nanoparticles[J]. Mater Lett, 2016,180:305-308. doi: 10.1016/j.matlet.2016.04.170

    14. [14]

      XU Xiaoqiu. Effects of Intrinsic Defects and Impurities on the Luminescence in ZnO[D]. University of Science and Technology of China, 2009(in Chinese).

    15. [15]

      Ashokkumar M, Muthukumaran S. Effect of Ni Doping on Electrical, Photo Luminescence and Magnetic Behavior of Cu Doped ZnO Nanoparticle[J]. J Lumin, 2015,162:97-153. doi: 10.1016/j.jlumin.2015.02.019

    16. [16]

      Xian F, Li X. Effect of Nd Doping Level on Optical and Structural Properties of ZnO:Nd Thin Film Synthesized by the Gel-Gel Route[J]. Opt Laser Technol, 2013,45:505-512.  

    17. [17]

      Silambarasan M, Vanan S Sara, Soga T. Effect of Fe-Doping on the Structural, Morpho1ogical and Optical Properties of ZnO Nanoparticles Synthesized by Solution Combustion Process[J]. Phys E, 2015,71:109-116. doi: 10.1016/j.physe.2015.04.002

    18. [18]

      Mohd Mubashshhir Hasan Faroqi , Srivastava Rajneesh K. Enhanced UV-Vis Photo-conductivity and Photo-luminescence by Doping of Samarium in ZnO Nanostructures Synthesized by Solid State Reaction Method[J]. Optik, 2016,127:3991-3998. doi: 10.1016/j.ijleo.2016.01.074

    19. [19]

      ZHANG Jinlong, CHEN Duo, TIAN Baozhu, et al. Photocatalyst[M]. Shanghai:East China University of Science and Technology University Press, 2012:13-20(in Chinese).

    20. [20]

      CUI Congwei, SUN Shiquan, HUANG Junli. Comparative Analysis of Hydroxyl Radical Scavengers[J]. J Harbin Univ Commerce(Nat Sci Ed), 2004,20(3):342-345. doi: 10.3969/j.issn.1672-0946.2004.03.025

    21. [21]

      Kim S K, Gopi C V V M, Rao S S. Highly Efficient Yttrium-Doped ZnO Nanorods for Quantum Dot-Sensitized Solar Cells[J]. Appl Surf Sci, 2016,365:136-142. doi: 10.1016/j.apsusc.2016.01.043

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(5)
  • Abstract views(1800)
  • HTML views(258)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return