Citation: SUN Xiaotong, CHEN Nan, LIANG Hanxue, LI Zengling, LIU Qianwen, QU Liangti. Progress of Fabrication of One-Dimensional Hybrid Nanomaterials by Template-Confined Growth and Their Diverse Applications[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 123-133. doi: 10.11944/j.issn.1000-0518.2020.02.190261 shu

Progress of Fabrication of One-Dimensional Hybrid Nanomaterials by Template-Confined Growth and Their Diverse Applications

  • Corresponding author: CHEN Nan, gabechain@bit.edu.cn
  • Received Date: 9 October 2019
    Revised Date: 5 November 2019
    Accepted Date: 26 November 2019

    Fund Project: Beijing Natural Science Foundation 2172049National Natural Science Foundation of China 21671020Supported by the National Natural Science Foundation of China(No.21671020), and Beijing Natural Science Foundation(No.2172049)

Figures(6)

  • Due to their unique physical and chemical properties, one-dimensional (1D) hybrid nanomaterials have been widely used in electrical, optical, catalytic and other fields, and their preparation methods are critical to the regulation of performance. In recent years, template method has been widely used as a simple and general synthetic method for the synthesis of 1D nanostructures and nanoarrays. This paper discusses trends in the 1D hybrid nanomaterials prepared by anodic aluminum oxide(AAO) template method combined with other techniques, and their applications in stimuli-responsive devices, energy storage and conversion devices, catalysis, etc.
  • 加载中
    1. [1]

      CHEN Nan, ZHONG Guilin, ZHANG Guofeng. Application and Interaction Mechanism of Graphene in Polymer Flame Retardant Materials[J]. Chinese J Appl Chem, 2018,35(3):307-316.  

    2. [2]

      Yuan J, Müller A H E. One-dimensional Organic-Inorganic Hybrid Nanomaterials[J]. Polymer, 2010,51(18):4015-4036. doi: 10.1016/j.polymer.2010.06.064

    3. [3]

      Garnett E, Mai L Q, Yang P D. Introduction:1D Nanomaterials/Nanowires[J]. Chem Rev, 2019,119:8955-8957. doi: 10.1021/acs.chemrev.9b00423

    4. [4]

      Huang Y, Zhang L R. Research Status and Development Trend of Nanomaterials Preparation Methods[J]. Sci Technol Consult Herald, 2015,10248.

    5. [5]

      Xie Y D, Kocaefe D, Chen C Y. Review of Research on Template Methods in Preparation of Nanomaterials[J]. J Nano Mater, 2016,2016:1-10.  

    6. [6]

      Chen N, Huang C, Yang W. Growth Control for Architecture Molecular Conductor of Low Dimension Nanostructures[J]. J Phys Chem C, 2010,114(30):12982-12986. doi: 10.1021/jp103911x

    7. [7]

      Lee W, Park S J. Porous Anodic Aluminum Oxide:Anodization and Templated Synthesis of Functional Nanostructures[J]. Chem Rev, 2014,114:7487-7556. doi: 10.1021/cr500002z

    8. [8]

      Xu Q, Meng G, Han F. Porous AAO Template-assisted Rational Synthesis of Large-scale 1D Hybrid and Hierarchically Branched Nanoarchitectures[J]. Prog Mater Sci, 2018,95:243-285. doi: 10.1016/j.pmatsci.2018.02.004

    9. [9]

      ZHANG Jilin, HONG Guangyan. Synthesis of Nanomaterials Using AAO Templates[J]. Chinese J Appl Chem, 2004,21(1):6-11.  

    10. [10]

      Liu K, Chen J, Zhou L. Fabrication of High Quality Ordered Porous Anodic Aluminum Oxide Templates[J]. High Power Laser Part Beams, 2010,22(7):1531-1534. doi: 10.3788/HPLPB20102207.1531

    11. [11]

      Wei Q, Fu Y, Zhang G. Rational Design of Nnovel Nnanostructured Arrays Based on Porous AAO Templates for Electrochemical Energy Storage and Conversion[J]. Nano Energy, 2018,55:234-259.  

    12. [12]

      ZHANG Zhang, HU Die, ZHANG Xiaoyan. Research Progress of Porous AAO Template Synthesis for Low-dimensional Ordered Nanostructure Array[J]. J South China Norm Univ(Nat Sci Ed), 2016,48(6):83-91.  

    13. [13]

      Li J, Zhang G F, Chen N. Built Structure of Ordered Vertically Aligned Codoped Carbon Nanowire Arrays for Supercapacitors[J]. ACS Appl Mater Interfaces, 2017,9(29):24840-24845. doi: 10.1021/acsami.7b05365

    14. [14]

      Nie X W, Chen N, Ji B X. Gradient Doped Polymer Nanowire for Moistelectric Nanogenerator[J]. Nano Energy, 2018,46:297-304. doi: 10.1016/j.nanoen.2018.02.012

    15. [15]

      Chen N, Qian X M, Lin H W. Growing Uniform Copolymer Nanowire Arrays for High Stability and Efficient Field Emission[J]. Mater Chem, 2012,22(22):11068-11072. doi: 10.1039/c2jm16368c

    16. [16]

      Guo Y B, Li Y L, Li Y J. Construction of Heterojunction Nanowires from Polythiophene/Polypyrrole for Applications as Efficient Switches[J]. Chem-Asian J, 2011,6(1):98-102. doi: 10.1002/asia.201000400

    17. [17]

      Guo Y, Tang Q, Liu H. Light-Controlled Organic Inorganic P-N Junction Nanowires[J]. J Am Chem Soc, 2008,130(29):9198-9199. doi: 10.1021/ja8021494

    18. [18]

      Lin H W, Liu H B, Qian X M. Constructing a Blue Light Photodetector on Inorganic/Organic p-n Heterojunction Nanowire Arrays[J]. Inorg Chem, 2011,50(16):7749-7753. doi: 10.1021/ic200900a

    19. [19]

      Qian X M, Liu H B, Chen N. Architecture of CuS/PbS Heterojunction Semiconductor Nanowire Arrays for Electrical Switches and Diodes[J]. Inorg Chem, 2012,51(12):6771-6775. doi: 10.1021/ic300471j

    20. [20]

      Xie W C, Zhang G F, Chen N. Axial Heterostructure Nanoarray as All-Solid-State Micro-supercapacitors[J]. Int J Energy Res, 2019,43:6013-6025. doi: 10.1002/er.4739

    21. [21]

      Chen N, Qian X M, Lin H W. Synthesis and Characterization of Axial Heterojunction Inorganic Organic Semiconductor Nanowire Arrays[J]. Dalton Trans, 2011,40(41):10804-10808. doi: 10.1039/c1dt10926j

    22. [22]

      Chen N, Chen S H, Ouyang C B. Electronic Logic Gates from Three-segment Nanowires Featuring Two P-N Heterojunctions[J]. NPG Asia Mater, 2013,5(8)e59. doi: 10.1038/am.2013.36

    23. [23]

      Chen N, Xue Z, Yang H. Growth of Axial Nested P-N Heterojunction Nanowires for High Performance Diodes[J]. Phys Chem Chem Phys, 2015,17(3):1785-1789. doi: 10.1039/C4CP04397A

    24. [24]

      Guo Y, Liu H B, Li Y J. Controlled Core-Shell Structure for Efficiently Enhancing Field-Emission Properties of Organic-Inorganic Hybrid Nanorods[J]. J Phys Chem C, 2009,113(29):12669-12673. doi: 10.1021/jp9030656

    25. [25]

      Hu J, Shirai Y, Han L. Template Method for Fabricating Interdigitate P-N Heterojunction for Organic Solar Cell[J]. Nanoscale Res Lett, 2012,7(1)469. doi: 10.1186/1556-276X-7-469

    26. [26]

      Chen N, Liu C, Zhang J H. Synthesis of (4-Hexyloxybenzoyl)butylsaure Methyl Amide/Poly(3-hexylthiophene) Heterojunction Nanowire Arrays[J]. ACS Appl Mater Interfaces, 2012,4(9):4841-4845. doi: 10.1021/am301174a

    27. [27]

      Zhao F, Liang Y, Cheng H H. Highly Efficient Moisture-enabled Electricity Generation from Graphene Oxide Frameworks[J]. Energy Environ Sci, 2016,9(3):912-916. doi: 10.1039/C5EE03701H

    28. [28]

      Ren G, Wu P T, Jenekhe S A. Solar Cells Based on Block Copolymer Semiconductor Nanowires:Effects of Nanowire Aspect Ratio[J]. ACS Nano, 2011,5(1):376-384. doi: 10.1021/nn1017632

    29. [29]

      Lin H W, Chen K, Li M K. Constructing a Green Light Photodetector on Inorganic/Organic Semiconductor Homogeneous Hybrid Nanowire Arrays with Remarkably Enhanced Photoelectric Response[J]. ACS Appl Mater Interfaces, 2019,11(10):10146-10152. doi: 10.1021/acsami.8b20340

    30. [30]

      Ponrouch A, Garbarino S, Bertin E. Ultra High Capacitance Values of Pt@RuO2 Core-Shell Nanotubular Electrodes for Microsupercapacitor Applications[J]. J Power Sources, 2013,221:228-231. doi: 10.1016/j.jpowsour.2012.08.033

    31. [31]

      NIE Xiaowei, CHEN Nan, LI Jing. Controllable Preparation and Application of Graphene-based Fiber Capacitors[J]. Chinese J Appl Chem, 2016,33(11):1234-1244. doi: 10.11944/j.issn.1000-0518.2016.11.160330 

    32. [32]

      Simon P, Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater, 2008,7:845-854. doi: 10.1038/nmat2297

    33. [33]

      Liu R, Lee S B. MnO2/Poly(3, 4-Ethylenedioxythiophene) Coaxial Nanowires by One-Step Coelectrodeposition for Electrochemical Energy Storage[J]. J Am Chem Soc, 2008,130(10):2942-2943. doi: 10.1021/ja7112382

    34. [34]

      Huynh W U, Dittmer J J, Alivisatos A P. Hybrid Nanorod-Polymer Solar Cells[J]. Science, 2002,295(5564):2425-2427. doi: 10.1126/science.1069156

    35. [35]

      Kelzenberg M D, Turner-Evans D B, Kayes B M. Photovoltaic Measurements in Single-nanowire Silicon Solar Cells[J]. Nano Lett, 2008,8(2):710-714. doi: 10.1021/nl072622p

    36. [36]

      Tian B, Zheng X, Kempa T J. Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources[J]. Nature, 2007,449(7164):885-889. doi: 10.1038/nature06181

    37. [37]

      Guo Y B, Zhang Y J, Liu H B. Assembled Organic/Inorganic p-n Junction Interface and Photovoltaic Cell on a Single Nanowire[J]. J Phys Chem Lett, 2010,1:327-330. doi: 10.1021/jz9002058

    38. [38]

      Yoo S H, Liu L, Ku T W. Single Inorganic-Organic Hybrid Photovoltaic Nanorod[J]. Appl Phys Lett, 2013,103(14):16-24.  

    39. [39]

      Kim K, Lee J W, Lee S H. Nanoscale Optical and Photoresponsive Electrical Properties of P3HT and PCBM Composite Nanowires[J]. Org Electron, 2011,12(10):1695-1700. doi: 10.1016/j.orgel.2011.06.019

    40. [40]

      Ozel T, Bourret G R, Schmucker A L. Hybrid Semiconductor Core-Shell Nanowires with Tunable Plasmonic Nanoantennas[J]. Adv Mater, 2013,25(32):4515-4520. doi: 10.1002/adma.201301367

    41. [41]

      Cao F F, Guo Y G, Wan L J. Better Lithium-Ion Batteries with Nanocable-Like Electrode Materials[J]. Energy Environ Sci, 2011,4(5):1634-1642. doi: 10.1039/c0ee00583e

    42. [42]

      Chan C K, Peng H, Liu G. High-performance Lithium Battery Anodes Using Silicon Nanowires[J]. Nat Nanotechnol, 2008,3(1)31. doi: 10.1038/nnano.2007.411

    43. [43]

      Cho J H, Picraux S T. Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands[J]. Nano Lett, 2013,13(11):5740-5747. doi: 10.1021/nl4036498

    44. [44]

      Beaulieu L Y, Hatchard T D, Bonakdarpour A. Reaction of Li with Alloy Thin Films Studied by in Situ AFM[J]. J Electrochem Soc, 2003,150(11):A1457-A1464. doi: 10.1149/1.1613668

    45. [45]

      Fang D, Li L C, Xu W L. High Capacity Lithium Ion Battery Anodes Using Sn Nanowires Encapsulated Al2O3 Tubes in Carbon Matrix[J]. Adv Mater Interfaces, 2016,3(5)1500491. doi: 10.1002/admi.201500491

    46. [46]

      Guo J C, Xu Y H, Wang C S. Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries[J]. Nano Lett, 2011,11(10):4288-4294. doi: 10.1021/nl202297p

    47. [47]

      Kim Y S, Ahn H J, Nam S H. Honeycomb Pattern Array of Vertically Standing Core-shell Nanorods:Its Application to Li Energy Electrodes[J]. Appl Phys Lett, 2008,93(10)103104. doi: 10.1063/1.2977862

    48. [48]

      Taberna P L, Mitra S, Poizot P. High Rate Capabilities Fe3O4-based Cu Nano-architectured Electrodes for Lithium-Ion Battery Applications[J]. Nat Mater, 2006,5(7):567-573. doi: 10.1038/nmat1672

    49. [49]

      Chen N, Liu Q W, Liu C. MEG Actualized by High-Valent Metal Carrier Transport[J]. Nano Energy, 2019,65104047. doi: 10.1016/j.nanoen.2019.104047

    50. [50]

      Jang B, Wang W, Wiget S. Catalytic locomotion of Core-Shell Nanowire Motors[J]. ACS Nano, 2016,10(11):9983-9991. doi: 10.1021/acsnano.6b04224

    51. [51]

      Li X R, Li H Y, Song G J. Preparation and Magnetic Properties of Nd/FM(FM=Fe, Co, Ni)/PA66 Three-Layer Coaxial Nanocables[J]. Nanoscale Res Lett, 2018,13(1)326. doi: 10.1186/s11671-018-2742-8

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    14. [14]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    20. [20]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

Metrics
  • PDF Downloads(6)
  • Abstract views(288)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return