Citation: CUI Huamin, ZHANG Xueqian, HU Pandeng, YAN Bing, HUANG Weiwei, GUO Wenfeng. Calix[4]quinone/N-Doped Amorphous Carbon Nanofibers Composites for Lithium-Ion Batteries[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 198-204. doi: 10.11944/j.issn.1000-0518.2020.02.190236 shu

Calix[4]quinone/N-Doped Amorphous Carbon Nanofibers Composites for Lithium-Ion Batteries

  • Corresponding author: HUANG Weiwei, huangweiwei@ysu.edu.cn GUO Wenfeng, wfguo@ysu.edu.cn
  • co-first author
  • Received Date: 5 September 2019
    Revised Date: 21 October 2019
    Accepted Date: 19 November 2019

    Fund Project: the National Natural Science Foundation of China 21403187the National Natural Science Foundation of China 21875206Supported by the National Natural Science Foundation of China(No.21875206, No.21403187), and the Natural Science Foundation of Hebei Province(No.B2019203487)the Natural Science Foundation of Hebei Province B2019203487

Figures(5)

  • Although calix[4]quinone (C4Q) has a theoretical specific capacity up to 447 mA·h/g, its high solubility in liquid electrolytes and low conductivity make it impractical in lithium-ion batteries (LIBs). In order to solve these problems, N-doped amorphous carbon nanofibers (NACF) were obtained by high-temperature carbonization with chitin as raw material, and were used to adsorb C4Q to prepare C4Q/NACF (mass ratio is 1:1) composite material. The as-assembled LIBs delivered an initial discharge capacity of 426 mA·h/g, and maintained 213 mA·h/g after 100 cycles at 0.1 C. Even at a high rate of 1 C, the capacity could still reach 188 mA·h/g. These experimental results show that the performance of LIBs is effectively improved by using NACF biomass carbon to immobilize C4Q.
  • 加载中
    1. [1]

      Armand M, Tarascon J M. Building Better Batteries[J]. Nature, 2008,451(7179):652-657. doi: 10.1038/451652a

    2. [2]

      Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries[J]. Chem Mater, 2010,22(3):587-603. doi: 10.1021/cm901452z

    3. [3]

      Xin S, Guo Y G, Wan L J. Nanocarbon Networks for Advanced Rechargeable Lithium Batteries[J]. Acc Chem Res, 2012,45(10):1759-1769. doi: 10.1021/ar300094m

    4. [4]

      CHEN Lihui, WU Qiuhan, PAN Pei. Spinel Lithium Manganese Oxide Octahedral Nanoparticles with Excellent Electrochemical Performance as Cathode Materials for Lithium-Ion Batteries[J]. Chinese J Appl Chem, 2018,35(11):1384-1390. doi: 10.11944/j.issn.1000-0518.2018.11.170407 

    5. [5]

      Zhou M, Qian J F, Ai X P. Redox-Active Fe(CN)64--Doped Conducting Polymers with Greatly Enhanced Capacity as Cathode Materials for Li-Ion Batteries[J]. Adv Mater, 2011,23(42):4913-4917. doi: 10.1002/adma.201102867

    6. [6]

      Han X Y, Chang C X, Yuan L J. Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials[J]. Adv Mater, 2007,19(12):1616-1621. doi: 10.1002/adma.200602584

    7. [7]

      Song Z P, Zhou H S. Towards Sustainable and Versatile Energy Storage Devices:An Overview of Organic Electrode Materials[J]. Energy Environ Sci, 2013,6(8):2280-2301. doi: 10.1039/c3ee40709h

    8. [8]

      Nokami T, Matsuo T, Inatomi Y. Polymer-Bound Pyrene-4, 5, 9, 10-Tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity[J]. J Am Chem Soc, 2012,134(48):19694-19700. doi: 10.1021/ja306663g

    9. [9]

      Song Z P, Qian Y M, Gordin M L. Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage[J]. Angew Chem Int Ed, 2015,54(47):13947-13951. doi: 10.1002/anie.201506673

    10. [10]

      Xie J, Wang Z L, Gu P Y. A Novel Quinone-Based Polymer Electrode for High Performance Lithium-Ion Batteries[J]. Sci China Mater, 2016,59(1):6-11. doi: 10.1007/s40843-016-0112-3

    11. [11]

      Larcher D, Tarascon J M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage[J]. Nat Chem, 2014,7(1):19-29.  

    12. [12]

      Ma J, Zhou E, Fan C. Endowing CuTCNQ with a New Role:A High-Capacity Cathode for K-Ion Batteries[J]. Chem Commun, 2018,54(44):5578-5581. doi: 10.1039/C8CC00802G

    13. [13]

      Wang L P, Zhang H Q, Mou C X. Dicarboxylate CaC8H4O4 as a High-Performance Anode for Li-Ion Batteries[J]. Nano Res, 2015,8(2):523-532. doi: 10.1007/s12274-014-0666-x

    14. [14]

      Zhang H Q, Deng Q J, Hou A J. Porous Li2C8H4O4 Coated with N-Doped Carbon by Using CVD as an Anode Material for Li-Ion Batteries[J]. J Mater Chem A, 2014,2(16):5696-5702. doi: 10.1039/C3TA14720G

    15. [15]

      Yang A K, Wang X C, Lu Y. Core-Shell Structured 1, 4-Benzoquinone@TiO2 Cathode for Lithium Batteries[J]. J Energy Chem, 2018,27(6):1644-1650. doi: 10.1016/j.jechem.2018.06.003

    16. [16]

      Visco S J, DeJonghe L C. Ionic Conductivity of Organosulfur Melts for Advanced Storage Electrodes[J]. J Electrochem Soc, 1988,135(12):2905-2909. doi: 10.1149/1.2095460

    17. [17]

      Liu K, Zheng J M, Zhong G M. Poly(2, 5-dihydroxy-1, 4-benzoquinonyl sulfide)(PDBS) as a Cathode Material for Lithium Ion Batteries[J]. J Mater Chem, 2011,21(12):4125-4131. doi: 10.1039/c0jm03127e

    18. [18]

      Huang W W, Zhu Z Q, Wang L J. Quasi-Solid-State Rechargeable Lithium-Ion Batteries with a Calix[4] quinone Cathode and Gel Polymer Electrolyte[J]. Angew Chem Int Ed, 2013,52(35):9162-9166. doi: 10.1002/anie.201302586

    19. [19]

      Zheng S B, Sun H M, Yan B. High-Capacity Organic Electrode Material Calix[4] quinone/CMK-3 Nanocomposite for Lithium Batteries[J]. Sci China Mater, 2018,61(10):1285-1290. doi: 10.1007/s40843-018-9259-4

    20. [20]

      YAN Bing, XIONG Wenxu, ZHENG Shibing. Single-Walled Carbon Nanotubes Enhanced Electrochemical Performance of High-Capacity Organic Cathode Composites Calix[4] quinone/Mesporous Carbon CMK-3 for Li-Ion Batteries[J]. Chinese J Appl Chem, 2019,36(42):554-563.  

    21. [21]

      Ma Q L, Yu Y F, Sindoro M. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage[J]. Adv Mater, 2017,29(13)1605361. doi: 10.1002/adma.201605361

    22. [22]

      Xu J T, Wang M, Wickramaratne N P. High-Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen-Doped Graphene Foams[J]. Adv Mater, 2015,27(12):2042-2048. doi: 10.1002/adma.201405370

    23. [23]

      YU Junfeng, CHEN Peirong, YU Zhimin. Preparation and Characterization of Activated Carbon from Sawdust Bio-char by Chemical Activation with KOH[J]. Chinese J Appl Chem, 2013,30(9):1017-1022.  

    24. [24]

      Luo L B, Chen J J, Wang M Z. Near-infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction[J]. Adv Funct Mater, 2014,24(19):2794-2800. doi: 10.1002/adfm.201303368

    25. [25]

      Gaddam R R, Yang D F, Narayan R. Biomass Derived Carbon Nanoparticle as Anodes for High Performance Sodium and Lithium Ion Batteries[J]. Nano Energy, 2016,26:346-352. doi: 10.1016/j.nanoen.2016.05.047

    26. [26]

      Cao Y L, Xiao L F, Sushko M L. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications[J]. Nano Lett, 2012,12(7):3783-3787. doi: 10.1021/nl3016957

    27. [27]

      Yang T Z, Qian T, Wang M F. A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries[J]. Adv Mater, 2015,28(3):539-545.  

    28. [28]

      LI Juntao, WU Jiaohong, ZHANG Tao. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys-Chim Sin, 2017,33(5):968-975.  

    29. [29]

      Komaba S, Murata W, Ishikawa T. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries[J]. Adv Funct Mater, 2011,21(20):3859-3867. doi: 10.1002/adfm.201100854

    30. [30]

      Luo W, Schardt J, Bommier C. Carbon Nanofibers Derived from Cellulose Nanofibers as a Long-Life Anode Material for Rechargeable Sodium-Ion Batteries[J]. J Mater Chem A, 2013,1(36):10662-10666. doi: 10.1039/c3ta12389h

    31. [31]

      Wang Y X, Chou S L, Liu H K. Reduced Graphene Oxide with Superior Cycling Stability and Rate Capability for Sodium Storage[J]. Carbon, 2013,57(1):202-208.  

    32. [32]

      Xiao L F, Cao Y L, Henderson W A. Hard Carbon Nanoparticles as High-Capacity, High-Stability Anodic Materials for Na-Ion Batteries[J]. Nano Energy, 2015,19:279-288.  

    33. [33]

      Yan N, Chen X. Sustainability:Don't Waste Seafood Waste[J]. Nature, 2015,524(7564):155-157. doi: 10.1038/524155a

    34. [34]

      Ifuku S, Saimoto H. Chitin Nanofibers:Preparations, Modifications, and Applications[J]. Nanoscale, 2012,4(11):3308-3318. doi: 10.1039/C2NR30383C

    35. [35]

      Duan B, Zheng X, Xia Z X. Highly Biocompatible Nanofibrous Microspheres Self-assembled from Chitin in NaOH/Urea Aqueous Solution as Cell Carriers[J]. Angew Chem Int Ed, 2015,54(17):5152-5156. doi: 10.1002/anie.201412129

    36. [36]

      Hao R, Yang Y, Wang H. Direct Chitin Conversion to N-Doped Amorphous Carbon Nanofibers for High-Performing Full Sodium-Ion Batteries[J]. Nano Energy, 2017,45:220-228.  

    37. [37]

      Gutowska A, Li L Y, Shin Y. Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane[J]. Angew Chem Int Ed, 2005,44(23):3578-3582. doi: 10.1002/anie.200462602

    38. [38]

      Xiong W X, Huang W W, Zhang M. Pillar[5] quinone-Carbon Nanocomposites as High-Capacity Cathodes for Sodium-Ion Batteries[J]. Chem Mater, 2019,31(19):8069-8075. doi: 10.1021/acs.chemmater.9b02601

    39. [39]

      Huang W W, Zhang X Q, Zheng S B, et al. Calix[6]quinone as High-Performance Cathode for Lithium-Ion Battery[J]. Sci China Mater, 2019-09-11[2019-09-16]. http://engine.scichina.com/publisher/scp/journal/SCMs/doi/10.1007/s40843-019-1185-2?slug=abstract.[published online ahead of print].

    40. [40]

      Morita Y, Agawa T, Nomura E. Syntheses and NMR Behavior of Calix[4] quinone and Calix[4] hydroquinone[J]. J Org Chem, 1992,57(13):3658-3662. doi: 10.1021/jo00039a027

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    12. [12]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    19. [19]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(508)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return