Calix[4]quinone/N-Doped Amorphous Carbon Nanofibers Composites for Lithium-Ion Batteries
- Corresponding author: HUANG Weiwei, huangweiwei@ysu.edu.cn GUO Wenfeng, wfguo@ysu.edu.cn ‡co-first author
Citation:
CUI Huamin, ZHANG Xueqian, HU Pandeng, YAN Bing, HUANG Weiwei, GUO Wenfeng. Calix[4]quinone/N-Doped Amorphous Carbon Nanofibers Composites for Lithium-Ion Batteries[J]. Chinese Journal of Applied Chemistry,
;2020, 37(2): 198-204.
doi:
10.11944/j.issn.1000-0518.2020.02.190236
Armand M, Tarascon J M. Building Better Batteries[J]. Nature, 2008,451(7179):652-657. doi: 10.1038/451652a
Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries[J]. Chem Mater, 2010,22(3):587-603. doi: 10.1021/cm901452z
Xin S, Guo Y G, Wan L J. Nanocarbon Networks for Advanced Rechargeable Lithium Batteries[J]. Acc Chem Res, 2012,45(10):1759-1769. doi: 10.1021/ar300094m
CHEN Lihui, WU Qiuhan, PAN Pei. Spinel Lithium Manganese Oxide Octahedral Nanoparticles with Excellent Electrochemical Performance as Cathode Materials for Lithium-Ion Batteries[J]. Chinese J Appl Chem, 2018,35(11):1384-1390. doi: 10.11944/j.issn.1000-0518.2018.11.170407
Zhou M, Qian J F, Ai X P. Redox-Active Fe(CN)64--Doped Conducting Polymers with Greatly Enhanced Capacity as Cathode Materials for Li-Ion Batteries[J]. Adv Mater, 2011,23(42):4913-4917. doi: 10.1002/adma.201102867
Han X Y, Chang C X, Yuan L J. Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials[J]. Adv Mater, 2007,19(12):1616-1621. doi: 10.1002/adma.200602584
Song Z P, Zhou H S. Towards Sustainable and Versatile Energy Storage Devices:An Overview of Organic Electrode Materials[J]. Energy Environ Sci, 2013,6(8):2280-2301. doi: 10.1039/c3ee40709h
Nokami T, Matsuo T, Inatomi Y. Polymer-Bound Pyrene-4, 5, 9, 10-Tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity[J]. J Am Chem Soc, 2012,134(48):19694-19700. doi: 10.1021/ja306663g
Song Z P, Qian Y M, Gordin M L. Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage[J]. Angew Chem Int Ed, 2015,54(47):13947-13951. doi: 10.1002/anie.201506673
Xie J, Wang Z L, Gu P Y. A Novel Quinone-Based Polymer Electrode for High Performance Lithium-Ion Batteries[J]. Sci China Mater, 2016,59(1):6-11. doi: 10.1007/s40843-016-0112-3
Larcher D, Tarascon J M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage[J]. Nat Chem, 2014,7(1):19-29.
Ma J, Zhou E, Fan C. Endowing CuTCNQ with a New Role:A High-Capacity Cathode for K-Ion Batteries[J]. Chem Commun, 2018,54(44):5578-5581. doi: 10.1039/C8CC00802G
Wang L P, Zhang H Q, Mou C X. Dicarboxylate CaC8H4O4 as a High-Performance Anode for Li-Ion Batteries[J]. Nano Res, 2015,8(2):523-532. doi: 10.1007/s12274-014-0666-x
Zhang H Q, Deng Q J, Hou A J. Porous Li2C8H4O4 Coated with N-Doped Carbon by Using CVD as an Anode Material for Li-Ion Batteries[J]. J Mater Chem A, 2014,2(16):5696-5702. doi: 10.1039/C3TA14720G
Yang A K, Wang X C, Lu Y. Core-Shell Structured 1, 4-Benzoquinone@TiO2 Cathode for Lithium Batteries[J]. J Energy Chem, 2018,27(6):1644-1650. doi: 10.1016/j.jechem.2018.06.003
Visco S J, DeJonghe L C. Ionic Conductivity of Organosulfur Melts for Advanced Storage Electrodes[J]. J Electrochem Soc, 1988,135(12):2905-2909. doi: 10.1149/1.2095460
Liu K, Zheng J M, Zhong G M. Poly(2, 5-dihydroxy-1, 4-benzoquinonyl sulfide)(PDBS) as a Cathode Material for Lithium Ion Batteries[J]. J Mater Chem, 2011,21(12):4125-4131. doi: 10.1039/c0jm03127e
Huang W W, Zhu Z Q, Wang L J. Quasi-Solid-State Rechargeable Lithium-Ion Batteries with a Calix[4] quinone Cathode and Gel Polymer Electrolyte[J]. Angew Chem Int Ed, 2013,52(35):9162-9166. doi: 10.1002/anie.201302586
Zheng S B, Sun H M, Yan B. High-Capacity Organic Electrode Material Calix[4] quinone/CMK-3 Nanocomposite for Lithium Batteries[J]. Sci China Mater, 2018,61(10):1285-1290. doi: 10.1007/s40843-018-9259-4
YAN Bing, XIONG Wenxu, ZHENG Shibing. Single-Walled Carbon Nanotubes Enhanced Electrochemical Performance of High-Capacity Organic Cathode Composites Calix[4] quinone/Mesporous Carbon CMK-3 for Li-Ion Batteries[J]. Chinese J Appl Chem, 2019,36(42):554-563.
Ma Q L, Yu Y F, Sindoro M. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage[J]. Adv Mater, 2017,29(13)1605361. doi: 10.1002/adma.201605361
Xu J T, Wang M, Wickramaratne N P. High-Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen-Doped Graphene Foams[J]. Adv Mater, 2015,27(12):2042-2048. doi: 10.1002/adma.201405370
YU Junfeng, CHEN Peirong, YU Zhimin. Preparation and Characterization of Activated Carbon from Sawdust Bio-char by Chemical Activation with KOH[J]. Chinese J Appl Chem, 2013,30(9):1017-1022.
Luo L B, Chen J J, Wang M Z. Near-infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction[J]. Adv Funct Mater, 2014,24(19):2794-2800. doi: 10.1002/adfm.201303368
Gaddam R R, Yang D F, Narayan R. Biomass Derived Carbon Nanoparticle as Anodes for High Performance Sodium and Lithium Ion Batteries[J]. Nano Energy, 2016,26:346-352. doi: 10.1016/j.nanoen.2016.05.047
Cao Y L, Xiao L F, Sushko M L. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications[J]. Nano Lett, 2012,12(7):3783-3787. doi: 10.1021/nl3016957
Yang T Z, Qian T, Wang M F. A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries[J]. Adv Mater, 2015,28(3):539-545.
LI Juntao, WU Jiaohong, ZHANG Tao. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys-Chim Sin, 2017,33(5):968-975.
Komaba S, Murata W, Ishikawa T. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries[J]. Adv Funct Mater, 2011,21(20):3859-3867. doi: 10.1002/adfm.201100854
Luo W, Schardt J, Bommier C. Carbon Nanofibers Derived from Cellulose Nanofibers as a Long-Life Anode Material for Rechargeable Sodium-Ion Batteries[J]. J Mater Chem A, 2013,1(36):10662-10666. doi: 10.1039/c3ta12389h
Wang Y X, Chou S L, Liu H K. Reduced Graphene Oxide with Superior Cycling Stability and Rate Capability for Sodium Storage[J]. Carbon, 2013,57(1):202-208.
Xiao L F, Cao Y L, Henderson W A. Hard Carbon Nanoparticles as High-Capacity, High-Stability Anodic Materials for Na-Ion Batteries[J]. Nano Energy, 2015,19:279-288.
Yan N, Chen X. Sustainability:Don't Waste Seafood Waste[J]. Nature, 2015,524(7564):155-157. doi: 10.1038/524155a
Ifuku S, Saimoto H. Chitin Nanofibers:Preparations, Modifications, and Applications[J]. Nanoscale, 2012,4(11):3308-3318. doi: 10.1039/C2NR30383C
Duan B, Zheng X, Xia Z X. Highly Biocompatible Nanofibrous Microspheres Self-assembled from Chitin in NaOH/Urea Aqueous Solution as Cell Carriers[J]. Angew Chem Int Ed, 2015,54(17):5152-5156. doi: 10.1002/anie.201412129
Hao R, Yang Y, Wang H. Direct Chitin Conversion to N-Doped Amorphous Carbon Nanofibers for High-Performing Full Sodium-Ion Batteries[J]. Nano Energy, 2017,45:220-228.
Gutowska A, Li L Y, Shin Y. Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane[J]. Angew Chem Int Ed, 2005,44(23):3578-3582. doi: 10.1002/anie.200462602
Xiong W X, Huang W W, Zhang M. Pillar[5] quinone-Carbon Nanocomposites as High-Capacity Cathodes for Sodium-Ion Batteries[J]. Chem Mater, 2019,31(19):8069-8075. doi: 10.1021/acs.chemmater.9b02601
Huang W W, Zhang X Q, Zheng S B, et al. Calix[6]quinone as High-Performance Cathode for Lithium-Ion Battery[J]. Sci China Mater, 2019-09-11[2019-09-16]. http://engine.scichina.com/publisher/scp/journal/SCMs/doi/10.1007/s40843-019-1185-2?slug=abstract.[published online ahead of print].
Morita Y, Agawa T, Nomura E. Syntheses and NMR Behavior of Calix[4] quinone and Calix[4] hydroquinone[J]. J Org Chem, 1992,57(13):3658-3662. doi: 10.1021/jo00039a027
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Dong-Bing Cheng , Junxin Duan , Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013