Citation: HUANG Xuewen, XU Sheng, ZHAO Wei, WEI Wei, LI Xiaojie, LIU Xiaoya. Hydrogen Peroxide Sensor Based on a Polymeric Self-assembled Nanoparticles-Modified Screen-Printed Electrode[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 235-241. doi: 10.11944/j.issn.1000-0518.2020.02.190190 shu

Hydrogen Peroxide Sensor Based on a Polymeric Self-assembled Nanoparticles-Modified Screen-Printed Electrode

  • Corresponding author: LIU Xiaoya, lxy@jiangnan.edu.cn
  • Received Date: 8 July 2019
    Revised Date: 16 August 2019
    Accepted Date: 9 September 2019

    Fund Project: the National Natural Science Foundation of China 51803079Supported by the National Natural Science Foundation of China(No.51803079, No.51573073)the National Natural Science Foundation of China 51573073

Figures(6)

  • We report on a facile and efficient construction of electrochemical biosensors by modifying the screen printed carbon electrodes (SPCE) with multifunctional polymeric nanoparticles. An amphiphilic random copolymer, poly(St-co-AA-co-VCz-co-DMAEMA) (PSACD), was first synthesized using styrene (St), acrylic acid (AA), N-vinylcarbazole (VCz) and dimethylaminoethyl methacrylate (DMAEMA) as hydrophobic, hydrophilic, electroactive and enzymatic compatible monomers, respectively. The polymeric nanoparticles (PSACD NPs) were then prepared through self-assembly of polymers in a selective solvent mixture of DMF/H2O. The obtained PSACD NPs were characterized by particle size analyzer and scanning electron microscope (SEM), and were used to fabricate the hydrogen peroxide (H2O2) biosensor with the functions of improving the specific surface areas, providing a suitable microenvironment for keeping the enzyme activity, and accelerating the electron transfer between enzymes and the electrodes. Specifically, the SPCE was successively modified by PSACD NPs suspensions, horseradish peroxidase (HRP) solution and perfluorosulfonic acid-PTFE copolymer (Nafion) solution. The properties of the proposed electrochemical biosensor were studied via an amperometric detection method. The results show that the biosensor has a short response time (less than 2 s) and a linear increasing response current with the concentration of H2O2 increasing from 0.02 to 7.48 mmol/L. The biosensor also has nice stability, good selectivity and excellent anti-interference performance.
  • 加载中
    1. [1]

      HUANG Qilin. Study on Novel Enzyme Biosensors Based on Functionalized Nanomaterials and Their Applications[D]. Shanghai: East China Normal University, 2013(in Chinese).

    2. [2]

      Chaiyo S, Mehmeti E, Žagar K. Electrochemical Sensors for the Simultaneous Determination of Zinc, Cadmium and Lead Using A Nafion/Ionic Liquid/Graphene Composite Modified Screen-Printed Carbon Electrode[J]. Anal Chim Acta, 2016,918:26-34. doi: 10.1016/j.aca.2016.03.026

    3. [3]

      Rungsawang T, Punrat E, Adkins J. Development of Electrochemical Paper-Based Glucose Sensor Using Cellulose-4-Aminophenylboronic Acid-Modified Screen-Printed Carbon Electrode[J]. Electroanalysis, 2016,28(3):462-468. doi: 10.1002/elan.201500406

    4. [4]

      Hu X, Goud K Y, Kumar V S. Disposable Electrochemical Aptasensor Based on Carbon Nanotubes-V2O5-Chitosan Nanocomposite for Detection of Ciprofloxacin[J]. Sens Actuators B, 2018,268:278-286. doi: 10.1016/j.snb.2018.03.155

    5. [5]

      Su W, Wang S, Cheng S. H. Electrochemically Pretreated Screen-Printed Carbon Electrodes for the Simultaneous Determination of Aminophenol Isomers[J]. J Electroanal Chem, 2011,651(2):166-172.  

    6. [6]

      SUN Jianjun, WEI Hang, LIN Zhibin, et al. Pretreatment Method of Screen-Printed Carbon Electrodes: CN, 101235502[P]. 2008-08-06(in Chinese).

    7. [7]

      González-Sánchez M, Gómez-Monedero B, Agrisuelas J. Highly Activated Screen-Printed Carbon Electrodes by Electrochemical Treatment with Hydrogen Peroxide[J]. Electrochem Commun, 2018,91:36-40. doi: 10.1016/j.elecom.2018.05.002

    8. [8]

      YANG Shaoming, CHEN Yansheng, LI Ruiqin. One-step Preparation of Horseradish Peroxidase Biosensor via Electrodeposition[J]. Chinese J Appl Chem, 2015,32(7):849-854.  

    9. [9]

      Li Z, Sheng L, Meng A. A Glassy Carbon Electrode Modified with a Composite Consisting of Reduced Graphene Oxide, Zinc Oxide and Silver Nanoparticles in a Chitosan Matrix for Studying the Direct Electron Transfer of Glucose Oxidase and for Enzymatic Sensing of Glucose[J]. Microchim Acta, 2016,183(5):1625-1632. doi: 10.1007/s00604-016-1791-x

    10. [10]

      Lee S W, Lee K Y, Song Y W. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform[J]. Adv Mater, 2016,28(8):1577-1584. doi: 10.1002/adma.201503930

    11. [11]

      Kanso H, García M B G, Llano L F. Novel Thin Layer Flow-Cell Screen-Printed Graphene Electrode for Enzymatic Sensors[J]. Biosens Bioelectron, 2017,93:298-304. doi: 10.1016/j.bios.2016.08.069

    12. [12]

      Arduini F, Forchielli M, Amine A. Screen-Printed Biosensor Modified with Carbon Black Nanoparticles for the Determination of Paraoxon Based on the Inhibition of Butyrylcholinesterase[J]. Microchim Acta, 2015,182(3/4):643-651.  

    13. [13]

      Hernández-Ibáñez N, García-Cruz L, Montiel V. Electrochemical Lactate Biosensor Based upon Chitosan/Carbon Nanotubes Modified Screen-Printed Graphite Electrodes for the Determination of Lactate in Embryonic Cell Cultures[J]. Biosens Bioelectron, 2016,77:1168-1174. doi: 10.1016/j.bios.2015.11.005

    14. [14]

      KULISONG Hayierbieke, ZENG Han. Direct Electrochemical Behavior and Sensing Performance of Nitrogen Doped Meso Porous Carbon and Chitosan Composite Immobilized with Laccase Modified Electrode[J]. Chinese J Appl Chem, 2013,30(10):1194-1201.  

    15. [15]

      Arduini F, Micheli L, Moscone D. Electrochemical Biosensors Based on Nanomodified Screen-Printed Electrodes:Recent Applications in Clinical Analysis[J]. TrAC Trends Anal Chem, 2016,79:114-126. doi: 10.1016/j.trac.2016.01.032

    16. [16]

      Nieto-Suárez M, López-Quintela M A, Lazzari M. Preparation and Characterization of Crosslinked Chitosan/Gelatin Scaffolds by Ice Segregation Induced Self-assembly[J]. Carbohydr Polym, 2016,141:175-183. doi: 10.1016/j.carbpol.2015.12.064

    17. [17]

      Harrison A, Vuong T T, Zeevi M P. Rapid Self-Assembly of Metal/Polymer Nanocomposite Particles as Nanoreactors and Their Kinetic Characterization[J]. Nanomaterials, 2019,9(3)318. doi: 10.3390/nano9030318

    18. [18]

      Seo E, Lee T, Lee K T. Versatile Double Hydrophilic Block Copolymer:Dual Role as Synthetic Nanoreactor and Ionic and Electronic Conduction Layer for Ruthenium Oxide Nanoparticle Supercapacitors[J]. J Mater Chem, 2012,22(23):11598-11604. doi: 10.1039/c2jm30738c

    19. [19]

      Heidari A, Younesi H, Mehraban Z. Selective Adsorption of Pb(Ⅱ), Cd(Ⅱ), and Ni(Ⅱ) Ions from Aqueous Solution Using Chitosan-MAA Nanoparticles[J]. Int J Biol Macromol, 2013,61:251-263. doi: 10.1016/j.ijbiomac.2013.06.032

    20. [20]

      Zhang S, Shao Y, Yin G. Self-assembly of Pt Nanoparticles on Highly Graphitized Carbon Nanotubes as an Excellent Oxygen-Reduction Catalyst[J]. Appl Catal B, 2011,102(3/4):372-377.  

    21. [21]

      Amalvy J I, Armes S P, Binks B P. Use of Sterically-Stabilised Polystyrene Latex Particles as a pH-Responsive Particulate Emulsifier to Prepare Surfactant-Free Oil-in-Water Emulsions[J]. Chem Commun, 2003(15):1826-1827. doi: 10.1039/b304967a

    22. [22]

      Yuan W, Zhang J, Zou H. Synthesis, Crystalline Morphologies, Self-assembly, and Properties of H-Shaped Amphiphilic Dually Responsive Terpolymers[J]. Polym Sci Part A:Polym Chem, 2012,50(13):2541-2552. doi: 10.1002/pola.26032

    23. [23]

      Huang S, Jiang S. Structures and Morphologies of Biocompatible and Biodegradable Block Copolymers[J]. RSC Adv, 2014,4(47):24566-24583. doi: 10.1039/C4RA03043E

    24. [24]

      YANG Lin. Study on Synthesis and Properties of Star Homo- and Block Copolymers of 4-Arm Dimethylaminoethyl Methacrylate[D]. Xi'an: Shaanxi Normal University, 2007(in Chinese). 

    25. [25]

      Prasad K S, Muthuraman G, Zen J M. The Role of Oxygen Functionalities and Edge Plane Sites on Screen-Printed Carbon Electrodes for Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid[J]. Electrochem Commun, 2008,10(4):559-563. doi: 10.1016/j.elecom.2008.01.033

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Kun JIANGYutong XUEKelin LIUMiao WANGTongming SUNYanfeng TANG . CeVO4 hollow microspheres: Fabrication and adsorption performance for dyes. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2229-2236. doi: 10.11862/CJIC.20250223

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    7. [7]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    9. [9]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    10. [10]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    18. [18]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    19. [19]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    20. [20]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

Metrics
  • PDF Downloads(1)
  • Abstract views(559)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return