Citation: SHI Hongling, WANG Wenjie, LI Xiang, JIAO Zhujin, LIU Yue, TANG Cunduo, KAN Yunchao, YAO Lunguang. Enantioselective Biosynthesis of L-Phenylglycine via Cascade Biocatalysis of D-Mandelate Dehydrogenase and L-Leucine Dehydrogenase[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 168-174. doi: 10.11944/j.issn.1000-0518.2020.02.190189 shu

Enantioselective Biosynthesis of L-Phenylglycine via Cascade Biocatalysis of D-Mandelate Dehydrogenase and L-Leucine Dehydrogenase

  • Corresponding author: TANG Cunduo, tcd530@126.com
  • Co-first author
  • Received Date: 8 July 2019
    Revised Date: 22 October 2019
    Accepted Date: 20 November 2019

    Fund Project: the State Key Laboratory of Motor Vehicle Biofuel Technology KFKT2018003Supported by the National Natural Science Foundation of China(No.3190110303, No.31870917), the State Key Laboratory of Motor Vehicle Biofuel Technology(No.KFKT2018003), and the Special Funded Projects of Nanyang Normal University(No.2018QN004)the National Natural Science Foundation of China 31870917the Special Funded Projects of Nanyang Normal University 2018QN004the National Natural Science Foundation of China 3190110303

Figures(7)

  • L-Phenylglycine is an important class of chiral non-natural amino acids, and can be used to synthesize a variety of important pharmaceutical intermediate. Exploiting the green synthesis process of phenylacetone acid has significant economic value. In this study, novel and highly active D-mandelate dehydrogenase (LhDMDH) and L-leucine dehydrogenase (EsLeuDH) are coupled to achieve bio-transformation of D-mandelic acid into L-phenylglycine on the premise of coenzyme circulation, and this reaction only requires a lower concentration of coenzyme. By optimizing the transformation conditions including added amount of enzyme, β-nicotinamide adenine dinucleotide (NAD+) concentration, NH4+ concentration and substrate concentration, we obtain the most economical condition:200 mmol/L D-mandelic acid, 6.5 kU/L enzyme, 0.1 mmol/L NAD +, 0.5 mol/L NH4+ and 30℃ for 12 h. The product yield and enantionmeric excess (e.e.) value can reach more than 98% and 99% under the most economical condition, respectively. This transformation has large industrialization potential, and lays a solid foundation for achieving large-scale biosynthesis of L-phenylglycine.
  • 加载中
    1. [1]

      Yasukawa K, Asano Y. Enzymatic Synthesis of Chiral Phenylalanine Derivatives by a Dynamic Kinetic Resolution of Corresponding Amide and Nitrile Substrates with a Multi-enzyme System[J]. Adv Synth Catal, 2012,354(17):3327-3332. doi: 10.1002/adsc.201100923

    2. [2]

      Fan C W, Xu G C, Ma B D. A Novel D-Mandelate Dehydrogenase Used in Three Enzyme Cascade Reaction for Highly Efficient Synthesis of Non-natural Chiral Amino Acids[J]. J Biotechnol, 2015,195:67-71. doi: 10.1016/j.jbiotec.2014.10.026

    3. [3]

      Wang Z M, Kolb H C, Sharpless K B. Large-Scale and Highly Enantioselective Synthesis of the Taxol C-13 Side Chain Through Asymmetric Dihydroxylation[J]. J Org Chem, 1994,59(17):5104-5105. doi: 10.1021/jo00096a072

    4. [4]

      Han S W, Shin J S. One-Pot Preparation of d-Amino Acids Through Biocatalytic Deracemization Using Alanine Dehydrogenase and ω-Transaminase[J]. Catal Lett, 2018,148(12):3678-3684. doi: 10.1007/s10562-018-2565-3

    5. [5]

      Resch V, Fabian W M F, Kroutil W. Deracemisation of Mandelic Acid to Optically Pure Non-natural L-Phenylglycine via a Redox-Neutral Biocatalytic Cascade[J]. Adv Synth Catal, 2010,352(6):993-997. doi: 10.1002/adsc.200900891

    6. [6]

      FAN Changwei. Gene Mining of D-Mandelate Dehydrogenase and Its Application in the Synthesis of L-Phenylglycine by Multi-enzyme Conjugation[D]. East China University of Science and Technology, 2014(in Chinese). 

    7. [7]

      Bornscheuer U T, Huisman G W, Kazlauskas R J. Engineering the Third Wave of Biocatalysis[J]. Nature, 2012,485(7397):185-194. doi: 10.1038/nature11117

    8. [8]

      TANG Cunduo, SHI Hongling, HE Zihan. Green Biosynthesis of Phenylglyoxylic Acid by Biotransformation Using Recombinant Escherichia Coli Whole Cells[J]. CIESC J, 2018,69(6):2627-2631.  

    9. [9]

      Tang C D, Shi H L, Xu J H. Biosynthesis of Phenylglyoxylic Acid by LhDMDH, a Novel D-Mandelate Dehydrogenase with High Catalytic Activity[J]. J Agric Food Chem, 2018,66(11):2805-2811. doi: 10.1021/acs.jafc.7b05835

    10. [10]

      Gokhale D V, Bastawde K B, Patil S G. Chemoenzymatic Synthesis of D-Phenylglycine Using Hydantoinase of Pseudomonas Desmolyticum Resting Cells[J]. Enzyme Microb Technol, 1996,18(5):353-357. doi: 10.1016/0141-0229(95)00127-1

    11. [11]

      Wiyakrutta S, Meevootisom V. A Stereo-Inverting D-Phenylglycine Aminotransferase from Pseudomonas Stutzeri ST-201:Purification, Characterization and Application for D-Phenylglycine Synthesis[J]. J Biotechnol, 1997,55(3):193-203. doi: 10.1016/S0168-1656(97)00075-8

    12. [12]

      Mast Y J, Wohlleben W, Schinko E. Identification and Functional Characterization of Phenylglycine Biosynthetic Genes Involved in Pristinamycin Biosynthesis in Streptomyces Pristinaespiralis[J]. J Biotechnol, 2011,155(1):63-67. doi: 10.1016/j.jbiotec.2010.12.001

    13. [13]

      Li D, Zeng Z, Yang J. Mandelate Racemase and Mandelate Dehydrogenase Coexpressed Recombinant Escherichia Coli in the Synthesis of Benzoylformate[J]. Biosci Biotechnol Biochem, 2013,77(6):1236-9. doi: 10.1271/bbb.121012

    14. [14]

      Chen F F, Liu Y Y, Zheng G W. Asymmetric Amination of Secondary Alcohols by Using a Redox-Neutral Two-Enzyme Cascade[J]. ChemCatChem, 2015,7(23):3838-3841. doi: 10.1002/cctc.201500785

    15. [15]

      TANG Cunduo, SHI Hongling, MA Yue. Gene Mining, Expression and Characterization of Novel R-Mandelate Dehydrogenases[J]. China Biotechnol, 2018,38(2):30-37.  

    16. [16]

      Gong X M, Qin Z, Li F L. Development of an Engineered Ketoreductase with Simultaneously Improved Thermostability and Activity for Making a Bulky Atorvastatin Precursor[J]. ACS Catal, 2019,9(1):147-153.  

    17. [17]

      Zhou J, Wang Y, Xu G. Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a "Polar Gate" in Stereorecognition of Diaryl Ketones[J]. J Am Chem Soc, 2018,140(39):12645-12654. doi: 10.1021/jacs.8b08640

    18. [18]

      Tang C D, Shi H L, Jiao Z J. Exploitation of Cold-Active Cephalosporin C Acylase by Computer-Aided Directed Evolution and Its Potential Application in Low-Temperature Biosynthesis of 7-Aminocephalosporanic Acid[J]. J Chem Technol Biotechnol, 2018,93(10):2925-2930. doi: 10.1002/jctb.5647

  • 加载中
    1. [1]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    6. [6]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    7. [7]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    8. [8]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    10. [10]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    13. [13]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    17. [17]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    18. [18]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    19. [19]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(4)
  • Abstract views(811)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return