Citation: SHI Hongling, WANG Wenjie, LI Xiang, JIAO Zhujin, LIU Yue, TANG Cunduo, KAN Yunchao, YAO Lunguang. Enantioselective Biosynthesis of L-Phenylglycine via Cascade Biocatalysis of D-Mandelate Dehydrogenase and L-Leucine Dehydrogenase[J]. Chinese Journal of Applied Chemistry, ;2020, 37(2): 168-174. doi: 10.11944/j.issn.1000-0518.2020.02.190189 shu

Enantioselective Biosynthesis of L-Phenylglycine via Cascade Biocatalysis of D-Mandelate Dehydrogenase and L-Leucine Dehydrogenase

  • Corresponding author: TANG Cunduo, tcd530@126.com
  • Co-first author
  • Received Date: 8 July 2019
    Revised Date: 22 October 2019
    Accepted Date: 20 November 2019

    Fund Project: the State Key Laboratory of Motor Vehicle Biofuel Technology KFKT2018003Supported by the National Natural Science Foundation of China(No.3190110303, No.31870917), the State Key Laboratory of Motor Vehicle Biofuel Technology(No.KFKT2018003), and the Special Funded Projects of Nanyang Normal University(No.2018QN004)the National Natural Science Foundation of China 31870917the Special Funded Projects of Nanyang Normal University 2018QN004the National Natural Science Foundation of China 3190110303

Figures(7)

  • L-Phenylglycine is an important class of chiral non-natural amino acids, and can be used to synthesize a variety of important pharmaceutical intermediate. Exploiting the green synthesis process of phenylacetone acid has significant economic value. In this study, novel and highly active D-mandelate dehydrogenase (LhDMDH) and L-leucine dehydrogenase (EsLeuDH) are coupled to achieve bio-transformation of D-mandelic acid into L-phenylglycine on the premise of coenzyme circulation, and this reaction only requires a lower concentration of coenzyme. By optimizing the transformation conditions including added amount of enzyme, β-nicotinamide adenine dinucleotide (NAD+) concentration, NH4+ concentration and substrate concentration, we obtain the most economical condition:200 mmol/L D-mandelic acid, 6.5 kU/L enzyme, 0.1 mmol/L NAD +, 0.5 mol/L NH4+ and 30℃ for 12 h. The product yield and enantionmeric excess (e.e.) value can reach more than 98% and 99% under the most economical condition, respectively. This transformation has large industrialization potential, and lays a solid foundation for achieving large-scale biosynthesis of L-phenylglycine.
  • 加载中
    1. [1]

      Yasukawa K, Asano Y. Enzymatic Synthesis of Chiral Phenylalanine Derivatives by a Dynamic Kinetic Resolution of Corresponding Amide and Nitrile Substrates with a Multi-enzyme System[J]. Adv Synth Catal, 2012,354(17):3327-3332. doi: 10.1002/adsc.201100923

    2. [2]

      Fan C W, Xu G C, Ma B D. A Novel D-Mandelate Dehydrogenase Used in Three Enzyme Cascade Reaction for Highly Efficient Synthesis of Non-natural Chiral Amino Acids[J]. J Biotechnol, 2015,195:67-71. doi: 10.1016/j.jbiotec.2014.10.026

    3. [3]

      Wang Z M, Kolb H C, Sharpless K B. Large-Scale and Highly Enantioselective Synthesis of the Taxol C-13 Side Chain Through Asymmetric Dihydroxylation[J]. J Org Chem, 1994,59(17):5104-5105. doi: 10.1021/jo00096a072

    4. [4]

      Han S W, Shin J S. One-Pot Preparation of d-Amino Acids Through Biocatalytic Deracemization Using Alanine Dehydrogenase and ω-Transaminase[J]. Catal Lett, 2018,148(12):3678-3684. doi: 10.1007/s10562-018-2565-3

    5. [5]

      Resch V, Fabian W M F, Kroutil W. Deracemisation of Mandelic Acid to Optically Pure Non-natural L-Phenylglycine via a Redox-Neutral Biocatalytic Cascade[J]. Adv Synth Catal, 2010,352(6):993-997. doi: 10.1002/adsc.200900891

    6. [6]

      FAN Changwei. Gene Mining of D-Mandelate Dehydrogenase and Its Application in the Synthesis of L-Phenylglycine by Multi-enzyme Conjugation[D]. East China University of Science and Technology, 2014(in Chinese). 

    7. [7]

      Bornscheuer U T, Huisman G W, Kazlauskas R J. Engineering the Third Wave of Biocatalysis[J]. Nature, 2012,485(7397):185-194. doi: 10.1038/nature11117

    8. [8]

      TANG Cunduo, SHI Hongling, HE Zihan. Green Biosynthesis of Phenylglyoxylic Acid by Biotransformation Using Recombinant Escherichia Coli Whole Cells[J]. CIESC J, 2018,69(6):2627-2631.  

    9. [9]

      Tang C D, Shi H L, Xu J H. Biosynthesis of Phenylglyoxylic Acid by LhDMDH, a Novel D-Mandelate Dehydrogenase with High Catalytic Activity[J]. J Agric Food Chem, 2018,66(11):2805-2811. doi: 10.1021/acs.jafc.7b05835

    10. [10]

      Gokhale D V, Bastawde K B, Patil S G. Chemoenzymatic Synthesis of D-Phenylglycine Using Hydantoinase of Pseudomonas Desmolyticum Resting Cells[J]. Enzyme Microb Technol, 1996,18(5):353-357. doi: 10.1016/0141-0229(95)00127-1

    11. [11]

      Wiyakrutta S, Meevootisom V. A Stereo-Inverting D-Phenylglycine Aminotransferase from Pseudomonas Stutzeri ST-201:Purification, Characterization and Application for D-Phenylglycine Synthesis[J]. J Biotechnol, 1997,55(3):193-203. doi: 10.1016/S0168-1656(97)00075-8

    12. [12]

      Mast Y J, Wohlleben W, Schinko E. Identification and Functional Characterization of Phenylglycine Biosynthetic Genes Involved in Pristinamycin Biosynthesis in Streptomyces Pristinaespiralis[J]. J Biotechnol, 2011,155(1):63-67. doi: 10.1016/j.jbiotec.2010.12.001

    13. [13]

      Li D, Zeng Z, Yang J. Mandelate Racemase and Mandelate Dehydrogenase Coexpressed Recombinant Escherichia Coli in the Synthesis of Benzoylformate[J]. Biosci Biotechnol Biochem, 2013,77(6):1236-9. doi: 10.1271/bbb.121012

    14. [14]

      Chen F F, Liu Y Y, Zheng G W. Asymmetric Amination of Secondary Alcohols by Using a Redox-Neutral Two-Enzyme Cascade[J]. ChemCatChem, 2015,7(23):3838-3841. doi: 10.1002/cctc.201500785

    15. [15]

      TANG Cunduo, SHI Hongling, MA Yue. Gene Mining, Expression and Characterization of Novel R-Mandelate Dehydrogenases[J]. China Biotechnol, 2018,38(2):30-37.  

    16. [16]

      Gong X M, Qin Z, Li F L. Development of an Engineered Ketoreductase with Simultaneously Improved Thermostability and Activity for Making a Bulky Atorvastatin Precursor[J]. ACS Catal, 2019,9(1):147-153.  

    17. [17]

      Zhou J, Wang Y, Xu G. Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a "Polar Gate" in Stereorecognition of Diaryl Ketones[J]. J Am Chem Soc, 2018,140(39):12645-12654. doi: 10.1021/jacs.8b08640

    18. [18]

      Tang C D, Shi H L, Jiao Z J. Exploitation of Cold-Active Cephalosporin C Acylase by Computer-Aided Directed Evolution and Its Potential Application in Low-Temperature Biosynthesis of 7-Aminocephalosporanic Acid[J]. J Chem Technol Biotechnol, 2018,93(10):2925-2930. doi: 10.1002/jctb.5647

  • 加载中
    1. [1]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    5. [5]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    11. [11]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    12. [12]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    13. [13]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    17. [17]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    18. [18]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    19. [19]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(3)
  • Abstract views(529)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return